Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

Computer Sciences

Distorted Waves

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Comparison Of Experimental And Theoretical Triple Differential Cross Sections For The Single Ionization Of Co₂ (1Πg) By Electron Impact, Zehra N. Ozer, Esam Ali, Mevlut Dogan, Murat Yavuz, Osman Alwan, Adnan Naja, Ochbadrakh Chuluunbaatar, Boghos B. Joulakian, Chuan-Gang Ning, James Colgan, Don H. Madison Jun 2016

Comparison Of Experimental And Theoretical Triple Differential Cross Sections For The Single Ionization Of Co₂ (1Πg) By Electron Impact, Zehra N. Ozer, Esam Ali, Mevlut Dogan, Murat Yavuz, Osman Alwan, Adnan Naja, Ochbadrakh Chuluunbaatar, Boghos B. Joulakian, Chuan-Gang Ning, James Colgan, Don H. Madison

Physics Faculty Research & Creative Works

Experimental and theoretical triple differential cross sections for intermediate-energy (250 eV) electron-impact single ionization of the CO2 are presented for three fixed projectile scattering angles. Results are presented for ionization of the outermost 1πg molecular orbital of CO2 in a coplanar asymmetric geometry. The experimental data are compared to predictions from the three-center Coulomb continuum approximation for triatomic targets, and the molecular three-body distorted wave (M3DW) model. It is observed that while both theories are in reasonable qualitative agreement with experiment, the M3DW is in the best overall agreement with experiment.


Evidence For Unnatural-Parity Contributions To Electron-Impact Ionization Of Laser-Aligned Atoms, G. S. J. Armstrong, J. Colgan, M. S. Pindzola, S. Amami, Don H. Madison, J. Pursehouse, K. L. Nixon, A. J. Murray Sep 2015

Evidence For Unnatural-Parity Contributions To Electron-Impact Ionization Of Laser-Aligned Atoms, G. S. J. Armstrong, J. Colgan, M. S. Pindzola, S. Amami, Don H. Madison, J. Pursehouse, K. L. Nixon, A. J. Murray

Physics Faculty Research & Creative Works

Recent measurements have examined the electron-impact ionization of excited-state laser-aligned Mg atoms. In this work we show that the ionization cross section arising from the geometry where the aligned atom is perpendicular to the scattering plane directly probes the unnatural parity contributions to the ionization amplitude. The contributions from natural parity partial waves cancel exactly in this geometry. Our calculations resolve the discrepancy between the nonzero measured cross sections in this plane and the zero cross section predicted by distorted-wave approaches. We demonstrate that this is a general feature of ionization from p-state targets by additional studies of ionization from …


Fully Differential Cross Sections For Electron-Impact Excitation-Ionization Of Aligned D₂, Esam Ali, A. L. Harris, J. Lower, E. Weigold, Chuang-Gang Ning, Don H. Madison Jun 2014

Fully Differential Cross Sections For Electron-Impact Excitation-Ionization Of Aligned D₂, Esam Ali, A. L. Harris, J. Lower, E. Weigold, Chuang-Gang Ning, Don H. Madison

Physics Faculty Research & Creative Works

We examine fully differential cross sections for 176 eV electron-impact dissociative excitation-ionization of orientated D2 for transitions to final ion states 2sσg, 2pσu, and 2pπu. In previous work [Phys. Rev. A 88, 062705 (2013)PLRAAN1050-294710.1103/PhysRevA.88.062705], we calculated these cross sections using the molecular four-body distorted wave (M4DW) method with the ground-state D2 wave function being approximated by a product of two Dyson 1s-type orbitals. The theoretical results were compared with experimental measurements for five different orientations of the target molecule (four in the scattering plane and one perpendicular to the scattering plane). For the unresolved …