Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physical Sciences and Mathematics

Ultrasound-Driven Fabrication Of Nanosized High-Entropy Materials For Heterogeneous Catalysis, Francis Uchenna Okejiri Dec 2021

Ultrasound-Driven Fabrication Of Nanosized High-Entropy Materials For Heterogeneous Catalysis, Francis Uchenna Okejiri

Doctoral Dissertations

High-entropy materials (HEMs) have emerged as a new class of multi-principal-element materials with great technological prospects. As a unique class of concentrated solid-solution materials, HEMs, formed on the premise of incorporating five or more principal elements into a single crystalline phase, provide an excellent opportunity to access superior catalytic materials ‘hiding’ in the unexplored central regions of a multicomponent phase space of higher orders.

However, the fabrication of HEMs is energy-intensive, typically requiring extreme temperatures and/or pressures under which agglomeration of particles occurs with a commensurate decrease in surface area. For most catalytic applications, non-agglomerated particles with high surface areas …


Analysis Of Titanium Dioxide Nanoparticles In Foods Using Raman Spectroscopic Techniques, Janamkumar Pandya Dec 2020

Analysis Of Titanium Dioxide Nanoparticles In Foods Using Raman Spectroscopic Techniques, Janamkumar Pandya

Doctoral Dissertations

Titanium dioxide (TiO2) and its nanoparticles (NPs) are widely used in various applications. Recently, the presence of TiO2 NPs in food and consumer products raised safety concerns to human health and the environment. The goal of this project is to explore the capability of Raman Spectroscopy in the analysis of TiO2-NPs and apply this technique for the analysis of TiO2-NPs in food and environmental samples. Two approaches, i.e. the ligand-based and the mapping-based, were evaluated. The ligand-based approach utilized the surface enhanced Raman scattering (SERS) property of the TiO2 NPs as a substrate to enhance the signal of a surface …


Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston Dec 2020

Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston

Doctoral Dissertations

In this thesis we explore two experimental systems probing the interactions of nanoparticles with lipid bilayer membranes. Inspired by the ability of cell membranes to alter their shape in response to bound particles, we report two experimental studies: one of nanospheres the other of long, slender nano-rods binding to lipid bilayer vesicles and altering the membrane shape. Our work illuminates the role of particle geometry, particle concentration, adhesion strength and membrane tension in how membrane morphology is determined. We combine giant unilamellar vesicles with oppositely charged nanoparticles, carefully tuning adhesion strength, membrane tension and particle concentration. In the case of …


Investigating The Accumulation, Sub-Organ Distribution, And Biochemical Effects Of Nanomaterials Using Mass Spectrometry, Kristen Nicole Sikora Dec 2020

Investigating The Accumulation, Sub-Organ Distribution, And Biochemical Effects Of Nanomaterials Using Mass Spectrometry, Kristen Nicole Sikora

Doctoral Dissertations

Gold nanoparticles (AuNPs) are attractive materials for use in various biomedical applications, such as therapeutic delivery, due to their unique chemical properties and modular tunability. Mass spectrometry methods, including laser desorption/ionization mass spectrometry (LDI-MS) and inductively coupled plasma mass spectrometry (ICP-MS) have been successfully used to evaluate the distribution of AuNPs in complex biological systems. As new AuNP-based materials are developed for applications in therapeutic delivery, it is essential to simultaneously develop analytical techniques that can comprehensively assess their behavior in vivo. In this dissertation, novel mass spectrometric methods have been developed and utilized to evaluate the uptake, distribution, …


Chemical Manipulation Of Macrophages: Nanomaterial And Molecular Approaches, Joseph Hardie Jul 2020

Chemical Manipulation Of Macrophages: Nanomaterial And Molecular Approaches, Joseph Hardie

Doctoral Dissertations

Macrophages, phagocytic cells of the innate immune system, are the body’s first line of defense against pathogens and are responsible for tissue maintenance. Macrophages are capable of sensing and internalizing external stimuli, and in response change their morphology and phenotype accordingly. Because macrophages are integral to immune function and tissue maintenance, dysregulation of macrophage behavior is associated with a range of diseases including infections, cancer, autoimmune disorders, atherosclerosis, and more. Because of the implications of macrophage failure, there is interest in creating new materials to manipulate macrophage behavior for a therapeutic effect. In this thesis, I describe the application of …


Powering Advances In Next-Generation Photovoltaics Through Materials Synthesis And Characterization, Christie L.C. Ellis Mar 2020

Powering Advances In Next-Generation Photovoltaics Through Materials Synthesis And Characterization, Christie L.C. Ellis

Doctoral Dissertations

Solar energy is our most abundant natural resource: the energy from sunlight that strikes the Earth in one hour is more than the energy consumed globally in a year. This makes photovoltaics, which convert solar energy into electrical energy, a critical technology to pursue. 95% of the photovoltaic market is dominated by silicon; its high efficiency, stability, and plummeting manufacturing costs made it the clear choice for commercialization. However, silicon solar cells are thick, heavy, opaque, and rigid, limiting potential applications. They are energy- and resource-intensive to produce, and their manufacturing process uses and produces several toxic substances. “Next-generation” photovoltaic …


Assembly Of Particles Onto Rigid Cylinders And Flexible Membranes: Probing Effects Of Surface Curvature And Deformation, Derek Wood Nov 2017

Assembly Of Particles Onto Rigid Cylinders And Flexible Membranes: Probing Effects Of Surface Curvature And Deformation, Derek Wood

Doctoral Dissertations

In this thesis we explore two specific topics within the broad field of particle adhesion. First, we examine the effect of substrate shape and geometry on the self assembly of adsorbed particles, by performing molecular dynamics simulations of interacting particles constrained to the surface of cylinders of varying diameters. We find the diameter of the cylinder imposes a constraint on the shape and crystallographic orientation of the self-assembled lattice, essentially determining the optimal arrangement of particles a priori. We propose a simple one-dimensional model to explain the optimal arrangement of particles as a function of the particle interaction potential …


Analysis Of Gold Nanoparticles And Their Use With Laser Desorption/Ionization Mass Spectrometry, Alyssa Marsico Mar 2017

Analysis Of Gold Nanoparticles And Their Use With Laser Desorption/Ionization Mass Spectrometry, Alyssa Marsico

Doctoral Dissertations

Gold nanoparticles (AuNPs) have many unique properties that make them attractive for use in various biological applications. Laser desorption/ionization mass spectrometry (LDI-MS) has been used to monitor AuNPs in complex biological samples but there are still many ways in which AuNPs can be used with MS. In this dissertation, the use of AuNPs to assist in analyte ionization has been investigated. Their ability to enhance signal from biomolecules based on their surface chemistry, size, aggregation and method of deposition has been studied. The first use of an inkjet printer to create surfaces from which analytes can be sampled is discussed …


Aggregation And Coagulation Of C60 Fullerene As Affected By Natural Organic Matter And Ionic Strength, Hamid Mashayekhi Nov 2016

Aggregation And Coagulation Of C60 Fullerene As Affected By Natural Organic Matter And Ionic Strength, Hamid Mashayekhi

Doctoral Dissertations

With widespread production and use of C60 fullerene nanoparticles, their release to the environment and natural waters is inevitable. The colloidal nature of C60 fullerene in the aquatic environment significantly influences its behavior in the environment including its transport, bioavailability and toxicity to different organisms. Natural organic matter (NOM) is a ubiquitous and reactive material in aquatic environments with significant structural heterogeneity. Therefore, the effect of NOM molecules on the colloidal behavior of fullerene particles needs to be studied. A major part of NOM consists of humic acids (HA). HAs have pronounced effects on the aggregation of C …


Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi May 2016

Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi

Doctoral Dissertations

Metal particles of the dimensions of the order of 1 to 100's of nanometers show unique properties that are not clearly evident in their bulk state. These nanoparticles are highly reactive and sensitive to the changes in the vicinity of the particle surface and hence find applications in the field of sensing of chemical and biological agents, catalysis, energy harvesting, data storage and many more. By synthesizing bimetallic nanoparticles, a single nanoparticle can show multifunctional characteristics. The focus of this thesis is to detail the synthesis and understand the properties of bimetallic nanomaterial systems that show interesting optical, chemical, and …


Inkjet Printing For Biosensing And Security Applications, Brian Creran Nov 2015

Inkjet Printing For Biosensing And Security Applications, Brian Creran

Doctoral Dissertations

The adaptation of inkjet printing technology has recently been used to create controlled high throughput micro- and nano-scaled structures. Coupling this technique with gold nanoparticles in our research has produced new platforms for biosensors, chemical patterning, and anti-counterfeiting applications. In this presentation, we will highlight promising fabrication strategies including the development of test strips for the determination of bacteria in drinking water as well as the use of patterned nanoparticles for security applications.


Structure-Property Relationships At The Nano-Bio Interface: Engineering The Nanoparticle Surface For Immunomodulation, Daniel Fernando Moyano Marino Aug 2015

Structure-Property Relationships At The Nano-Bio Interface: Engineering The Nanoparticle Surface For Immunomodulation, Daniel Fernando Moyano Marino

Doctoral Dissertations

Each year, a variety of novel nanomaterials are being developed with the objective of treating different diseases. However, since nanomaterials are foreign to the human body, one of the principal factors that limit their use is the encounter with the first line of defense from the body: the immune system. If this interaction is not taken into account, an undesired recognition takes place and the efficiency of nanoparticle based therapies is dramatically reduced. As such, understanding the rules that govern this recognition is of prime importance in the field of nanomedicine. Following this line of thoughts (the driving force), the …


Polymer Additives Effects On Structure And Dynamics, Adam Eugene Imel Aug 2015

Polymer Additives Effects On Structure And Dynamics, Adam Eugene Imel

Doctoral Dissertations

This dissertation presents work that expands the understanding of the effect additives have on the structure and dynamics of a polymer matrix. Polymer additives are molecules, nanoparticles or fibers that are added to a polymer to modify the properties of the host polymer. Due to the vast amount of additives available, our studies were limited to C60 (C60), soft polystyrene nanoparticles, and poly(ethylene oxide).

The first part of this project examined the influence that C60 nanoparticles have on the assembly of polyacrylonitrile using small angle and wide-angle x-ray scattering techniques and viscometry. The addition of C60 (C60) …


Engineered Nanoparticles For Detection And Treatment Of Bacteria And Biofilms, Xiaoning Li Nov 2014

Engineered Nanoparticles For Detection And Treatment Of Bacteria And Biofilms, Xiaoning Li

Doctoral Dissertations

Rapid and sensitive detection and identification of bacteria woud control and prevent bacterial infection and disease, enhancing the likelihood of early diagnosis and treatment. Especially developing effective biosensor for identification of bacteria species involved in formation of biofilms, which cause chronic and persistent diseases, would promote diagnostic and therapeutic efficiency. Conventional detection methods are limited by sensitivity and required time. First part of my research has been focused on developing a rapid, simple, and sensitive biosensor aiming at portable device application for detection of bacteria in water samples. This sensor is able to detect bacteria at low concentration and generate …


Mass Spectrometric Characterization And Imaging Of Nanoparticles In Biological Samples, Bo Yan Aug 2014

Mass Spectrometric Characterization And Imaging Of Nanoparticles In Biological Samples, Bo Yan

Doctoral Dissertations

Nanoparticles (NPs) are being investigated widely for use in biomedical applications such as imaging, drug delivery, and cancer therapy due to their small size and readily tunable properties. The ability to accurately characterize NPs and monitor their spatial distributions is highly desirable for effective use of NPs and evaluation of their potential adverse environmental, health, and safety effects. In this dissertation, a simple, fast, and sensitive method based on laser desorption/ionization mass spectrometry (LDI-MS) to characterize and track NPs in biological systems has been developed. This method is especially well suited for characterizing core-shell structured NPs, such as quantum dots …