Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Australian Institute for Innovative Materials - Papers

Electrochemical

Articles 1 - 30 of 37

Full-Text Articles in Physical Sciences and Mathematics

Structure And Electrochemical Performance Modulation Of A Lini0.8co0.1mn0.1o2 Cathode Material By Anion And Cation Co-Doping For Lithium Ion Batteries, Rong Li, Yong Ming, Wei Xiang, Chunliu Xu, Guilin Feng, Yongchun Li, Yanxiao Chen, Zhenguo Wu, Ben-He Zhong, Xiaodong Guo Jan 2019

Structure And Electrochemical Performance Modulation Of A Lini0.8co0.1mn0.1o2 Cathode Material By Anion And Cation Co-Doping For Lithium Ion Batteries, Rong Li, Yong Ming, Wei Xiang, Chunliu Xu, Guilin Feng, Yongchun Li, Yanxiao Chen, Zhenguo Wu, Ben-He Zhong, Xiaodong Guo

Australian Institute for Innovative Materials - Papers

Ni-rich layered transition metal oxides show great energy density but suffer poor thermal stability and inferior cycling performance, which limit their practical application. In this work, a minor content of Co and B were co-doped into the crystal of a Ni-rich cathode (LiNi0.8Co0.1Mn0.1O2) using cobalt acetate and boric acid as dopants. The results analyzed by XRD, TEM, XPS and SEM reveal that the modified sample shows a reduced energy barrier for Li+ insertion/extraction and alleviated Li+/Ni2+ cation mixing. With the doping of B and Co, corresponding enhanced cycle stability was achieved with a high capacity retention of 86.1% at 1.0C …


Construction Of Hierarchical Mose2 Hollow Structures And Its Effecton Electrochemical Energy Storage And Conversion, Sha Hu, Qingqing Jiang, Shuoping Ding, Ye Liu, Zuozuo Wu, Zhengxi Huang, Tengfei Zhou, Zaiping Guo, Juncheng Hu Jan 2018

Construction Of Hierarchical Mose2 Hollow Structures And Its Effecton Electrochemical Energy Storage And Conversion, Sha Hu, Qingqing Jiang, Shuoping Ding, Ye Liu, Zuozuo Wu, Zhengxi Huang, Tengfei Zhou, Zaiping Guo, Juncheng Hu

Australian Institute for Innovative Materials - Papers

Metal selenides have attracted increased attentionas promising electrode materials for electrochemical energy storageand conversion systems including metal-ion batteries and watersplitting. However, their practical application is greatly hindered bycollapse of the microstructure, thus leading to performance fading.Tuning the structure at nanoscale of these materials is an effectivestrategy to address the issue. Herein, we craft MoSe2withhierarchical hollow structures via a facile bubble-assistedsolvothermal method. The temperature-related variations of thehollow interiors are studied, which can be presented as solid, yolk−shell, and hollow spheres, respectively. Under the simultaneousaction of the distinctive hollow structures and interconnectionsamong the nanosheets, more intimate contacts between MoSe2and electrolyte can be …


Engineering Surface Amine Modifiers Of Ultrasmall Gold Nanoparticles Supported On Reduced Graphene Oxide For Improved Electrochemical Co2 Reduction, Yong Zhao, Caiyun Wang, Yuqing Liu, Douglas R. Macfarlane, Gordon G. Wallace Jan 2018

Engineering Surface Amine Modifiers Of Ultrasmall Gold Nanoparticles Supported On Reduced Graphene Oxide For Improved Electrochemical Co2 Reduction, Yong Zhao, Caiyun Wang, Yuqing Liu, Douglas R. Macfarlane, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Ultrasmall gold (Au) nanoparticles with high mass activity have great potential for practical applications in CO2electroreduction. However, these nanoparticles often suffer from poor product selectivity since their abundant low-coordinated sites are favorable for H2evolution. In this work, a catalyst, reduced graphene oxide supported ultrasmall Au nanoparticles (≈2.4 nm) is developed which delivers high Au-specific mass activities (>100 A g-1) and good Faradaic efficiencies (32-60%) for the CO2-to-CO conversion at moderate overpotentials (450-600 mV). The efficiencies can be improved to 59-75% while retaining the ultrahigh mass activities via a simple amine-modification strategy. In addition, an amine-structure-dependent effect is revealed: linear …


Investigations Into The Electrochemical Etching Process Of P-Type Silicon Using Ethanol-Surfactant Solutions, Sivakumar Balakrishnan, Yurii K. Gun'ko, Gerhard F. Swiegers, Tatiana S. Perova Jan 2017

Investigations Into The Electrochemical Etching Process Of P-Type Silicon Using Ethanol-Surfactant Solutions, Sivakumar Balakrishnan, Yurii K. Gun'ko, Gerhard F. Swiegers, Tatiana S. Perova

Australian Institute for Innovative Materials - Papers

In this work, the electrochemical etching of p-type silicon was performed in aqueous ethanol-surfactant solutions and the dependence of morphology and luminescent properties of porous silicon with respect to the etching parameters and silicon resistivities have been studied. The obtained porous silicon structures have been studied using various characterisation techniques such as SEM (Scanning Electron Microscopy) and Photoluminescence (PL) spectroscopy.


Rna Biomarkers: Diagnostic And Prognostic Potentials And Recent Developments Of Electrochemical Biosensors, Md Nazmul Islam, Mostafa Kamal Masud, Md Hakimul Haque, Md. Shahriar Al Hossain, Yusuke Yamauchi, Nam-Trung Nguyen, Muhammad J. A Shiddiky Jan 2017

Rna Biomarkers: Diagnostic And Prognostic Potentials And Recent Developments Of Electrochemical Biosensors, Md Nazmul Islam, Mostafa Kamal Masud, Md Hakimul Haque, Md. Shahriar Al Hossain, Yusuke Yamauchi, Nam-Trung Nguyen, Muhammad J. A Shiddiky

Australian Institute for Innovative Materials - Papers

Ribonucleic acids (RNAs) are considered as effective and minimally invasive biomarkers for disease diagnosis and prognosis due to their critical role in the regulation of different cellular processes. Over the past several years, the rapid progress in RNA biomarker research has resulted in the development of a large number of high-performance RNA-detection methods. Most of these methods are based on molecular-biology techniques such as quantita-tive reverse transcription polymerase chain reaction (RT-qPCR), microarrays, and RNA sequencing. In recent years, considerable attention has also been dedicated to developing RNA biosensors, exploiting micro- and nanofabrica-tion technologies, and various readout strategies, including electrochemical and …


Systematic Elongation Of Thienyl Linkers And Their Effect On Optical And Electrochemical Properties In Carbazole-Bodipy Donor-Acceptor Systems, Alina Brzeczek, Katarzyna Piwowar, Wojciech Domagala, Mikotaj M. Mikotajczyk, Krzysztof Walczak, Pawel W. Wagner Jan 2016

Systematic Elongation Of Thienyl Linkers And Their Effect On Optical And Electrochemical Properties In Carbazole-Bodipy Donor-Acceptor Systems, Alina Brzeczek, Katarzyna Piwowar, Wojciech Domagala, Mikotaj M. Mikotajczyk, Krzysztof Walczak, Pawel W. Wagner

Australian Institute for Innovative Materials - Papers

Synthesis, spectral and electrochemical properties of a series of new panchromatic BODIPY donor-acceptor-donor derivatives, comprising carbazole conjugated with systematically elongated framework by thiophene-based linkers were investigated. It has been found that elongation of the π-system with one thiophene unit shifts the spectra toward near infrared, while incorporation of next thiophene derivatives has only limited influence on the lowest energy transition, causing no further shift of absorption maxima. Elongation of π-conjugation of the donor arm tunes the electron properties, influencing the ionization potential (IP) and electron affinity (EA) values of the molecules. The experimental results are supported by quantum chemical computations …


Host Structural Stabilization Of Li1.232mn0.615ni0.154o2 Through K-Doping Attempt: Toward Superior Electrochemical Performances, Zhuo Zheng, Xiao Dong Guo, Yan Jun Zhong, Wei-Bo Hua, Chong-Heng Shen, Shulei Chou, Xiu-Shan Yang Jan 2016

Host Structural Stabilization Of Li1.232mn0.615ni0.154o2 Through K-Doping Attempt: Toward Superior Electrochemical Performances, Zhuo Zheng, Xiao Dong Guo, Yan Jun Zhong, Wei-Bo Hua, Chong-Heng Shen, Shulei Chou, Xiu-Shan Yang

Australian Institute for Innovative Materials - Papers

Lithium-rich layered cathodes are known famously for its superior capacity over traditional layered oxides but trapped for lower initial coulombic efficiency, poorer rate capability and worse cyclic stability in spite of diverse attempts. Herein, a new K-stabilized Li-rich layered cathode synthesized through a simple oxalate co-precipitation is reported for its super electrochemical performances. Compared with pristine Li-rich layered cathode, K-stabilized one reaches a higher initial coulombic efficiency of 87% from 76% and outruns for 94% of capacity retention and 244 mAh g-1 of discharge capacity at 0.5C after 100 cycles. Moreover, 133 mAh g-1 of discharge capacity can be delivered …


Enhanced Simultaneous Detection Of Ractopamine And Salbutamol - Via Electrochemical-Facial Deposition Of Mno2 Nanoflowers Onto 3d Rgo/Ni Foam Templates, Mingyan Wang, Wei Zhu, Lin Ma, Juan Juan Ma, Dongen Zhang, Zhi Wei Tong, Jun Chen Jan 2016

Enhanced Simultaneous Detection Of Ractopamine And Salbutamol - Via Electrochemical-Facial Deposition Of Mno2 Nanoflowers Onto 3d Rgo/Ni Foam Templates, Mingyan Wang, Wei Zhu, Lin Ma, Juan Juan Ma, Dongen Zhang, Zhi Wei Tong, Jun Chen

Australian Institute for Innovative Materials - Papers

In this paper, we report a facile method to successfully fabricate MnO2 nanoflowers loaded onto 3D RGO@nickel foam, showing enhanced biosensing activity due to the improved structural integration of different electrode materials components. When the as-prepared 3D hybrid electrodes were investigated as a binder-free biosensor, two well-defined and separate differential pulse voltammetric peaks for ractopamine (RAC) and salbutamol (SAL) were observed, indicating the simultaneous selective detection of both β-agonists possible. The MnO2/RGO@NF sensor also demonstrated a linear relationship over a wide concentration range of 17nM to 962nM (R=0.9997) for RAC and 42nM to 1463nM (R=0.9996) for SAL, with the detection …


A Critical Review Of Electrochemical Noise Measurement As A Tool For Evaluation Of Organic Coatings, Seyed S. Jamali, Douglas J. Mills Jan 2016

A Critical Review Of Electrochemical Noise Measurement As A Tool For Evaluation Of Organic Coatings, Seyed S. Jamali, Douglas J. Mills

Australian Institute for Innovative Materials - Papers

The simplicity of measuring equipment and versatility of data analysis makes electrochemical noise measurement an ideal technique for acquiring electrochemical information about the corrosion behavior of a painted metal relatively quickly. Hence the method has great potential for use in the laboratory as well as in field situations. However, special care must be taken in choosing data acquisition parameters, reference electrodes and symmetry of electrodes in order to achieve reproducible measurements. These areas have been discussed in this review along with methods of data analysis, alternative electrode configurations for on-site measurements and novel applications of the technique.


Correlation Among Physical And Electrochemical Behaviour Of Nanostructured Electrolytic Manganese Dioxide From Leach Liquor And Synthetic For Aqueous Asymmetric Capacitor, Manickam Minakshi, Avijit Biswal, David R. G Mitchell, Rob Jones, Carlos Fernandez Jan 2016

Correlation Among Physical And Electrochemical Behaviour Of Nanostructured Electrolytic Manganese Dioxide From Leach Liquor And Synthetic For Aqueous Asymmetric Capacitor, Manickam Minakshi, Avijit Biswal, David R. G Mitchell, Rob Jones, Carlos Fernandez

Australian Institute for Innovative Materials - Papers

An attempt has been made to correlate the differences in structural parameters, surface areas, morphology etc. with the electrochemical capacitive behaviour of the EMDs. The nanostructured electrolytic manganese dioxides (EMD) have been synthesized through electrodepositing MnO2 from two different leach liquors and a synthetic analogue thereof. The structural and chemical state was determined using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) respectively. Multiplet structure determination led to estimates of the manganese valence states present in the EMD. The EMDs have been tested in an asymmetric capacitor which we have developed. This used activated carbon as the negative electrode and …


Light Activated Electrochemistry: Light Intensity And Ph Dependence On Electrochemical Performance Of Anthraquinone Derivatized Silicon, Ying Yang, Simone Ciampi, Moinul H. Choudhury, J Justin Gooding Jan 2016

Light Activated Electrochemistry: Light Intensity And Ph Dependence On Electrochemical Performance Of Anthraquinone Derivatized Silicon, Ying Yang, Simone Ciampi, Moinul H. Choudhury, J Justin Gooding

Australian Institute for Innovative Materials - Papers

We seek to understand how the thermodynamics and kinetics of anthraquinone-containing self-assembled monolayer on silicon electrodes are affected by two key experimental variables: the intensity of the light assisting the anthraquinone/anthrahydroquinone redox process and the local solution environment. The substrates are chemically passivated poorly doped p-type silicon electrodes. The study presents a strategy for the selective modulation of either the anodic or the cathodic process occurring at the interface. Cyclic voltammetry studies showed that unlike for a proton-coupled electron transfer process performed at metallic electrodes, for the redox reaction of the anthraquinone unit on a silicon electrode it becomes possible …


Facile Method To Synthesize Na-Enriched Na1+Xfefe(Cn)6 Frameworks As Cathode With Superior Electrochemical Performance For Sodium-Ion Batteries, Weijie Li, Shulei Chou, Jiazhao Wang, Yong-Mook Kang, Jianli Wang, Yong Liu, Qinfen Gu, Hua-Kun Liu, S X. Dou Jan 2015

Facile Method To Synthesize Na-Enriched Na1+Xfefe(Cn)6 Frameworks As Cathode With Superior Electrochemical Performance For Sodium-Ion Batteries, Weijie Li, Shulei Chou, Jiazhao Wang, Yong-Mook Kang, Jianli Wang, Yong Liu, Qinfen Gu, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

Different Na-enriched Na1+xFeFe(CN)6 samples can be synthesized by a facile one-step method, utilizing Na4Fe(CN)6 as the precursor in a different concentration of NaCl solution. As-prepared samples were characterized by a combination of synchrotron X-ray powder diffraction (S-XRD), Mössbauer spectroscopy, Raman spectroscopy, magnetic measurements, thermogravimetric analysis, X-ray photoelectron spectroscopy, and inductively coupled plasma analysis. The electrochemical results show that the Na1.56Fe[Fe(CN)6]·3.1H2O (PB-5) sample shows a high specific capacity of more than 100 mAh g-1 and excellent capacity retention of 97% over 400 cycles. The details structural evolution during …


Electrochemical Synthesis Of Mesoporous Pt Nanowires With Highly Electrocatalytic Activity Toward Methanol Oxidation Reaction, Cuiling Liu, Victor Malgras, Saad Alshehri, Jung Ho Kim, Yusuke Yamauchi Jan 2015

Electrochemical Synthesis Of Mesoporous Pt Nanowires With Highly Electrocatalytic Activity Toward Methanol Oxidation Reaction, Cuiling Liu, Victor Malgras, Saad Alshehri, Jung Ho Kim, Yusuke Yamauchi

Australian Institute for Innovative Materials - Papers

Self-supported one-dimensional (1D) mesoporous Pt nanowires (NWs) are prepared by confining micelle assembly in channels of a polycarbonate (PC) membrane. The obtained mesoporous Pt NWs show very high electrochemical activity and excellent durability as catalysts for methanol oxidation reaction (MOR) in comparison with the commercially available Pt black (PtB) catalyst. This work demonstrates that an appropriate combination of both self-supported 1D shape and mesoporous architecture indeed improve the electrocatalytic performances which is critical for further implementation and practical applications.


Corrosion Protection Afforded By Praseodymium Conversion Film On Mg Alloy Aznd In Simulated Biological Fluid Studied By Scanning Electrochemical Microscopy, Seyed S. Jamali, Simon E. Moulton, Dennis E. Tallman, Maria Forsyth, Jan Weber, Azadehsadat Mirabedini, Gordon G. Wallace Jan 2015

Corrosion Protection Afforded By Praseodymium Conversion Film On Mg Alloy Aznd In Simulated Biological Fluid Studied By Scanning Electrochemical Microscopy, Seyed S. Jamali, Simon E. Moulton, Dennis E. Tallman, Maria Forsyth, Jan Weber, Azadehsadat Mirabedini, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Surface passivation of AZNd Mg alloy with Pr(NO3)3 is studied using scanning electrochemical microscopy (SECM) in surface generation/tip collection (SG/TC) and AC modes. Corrosion protection afforded by the Pr treatment and the degradation mechanism in a simulated biological environment was examined on a local scale and compared with non-treated AZNd. SG/TC mode results revealed a drastic decrease in H2 evolution due to the Pr treatment. Mapping the local insulating characteristics using AC-SECM showed higher conductivity of the surface where H2 evolution was most favorable.


Effective Enhancement Of The Electrochemical Performance Of Layered Cathode Li1.5mn0.75ni0.25o2.5 Via A Novel Facile Molten Salt Method, Zhuo Zheng, Wei-Bo Hua, S Liao, Yan Jun Zhong, En-Hui Wang, Bin-Bin Xu, Hua-Kun Liu, Ben-He Zhong Jan 2015

Effective Enhancement Of The Electrochemical Performance Of Layered Cathode Li1.5mn0.75ni0.25o2.5 Via A Novel Facile Molten Salt Method, Zhuo Zheng, Wei-Bo Hua, S Liao, Yan Jun Zhong, En-Hui Wang, Bin-Bin Xu, Hua-Kun Liu, Ben-He Zhong

Australian Institute for Innovative Materials - Papers

A series of nanocrystalline lithium-rich cathode materials Li1.5Mn0.75Ni0.25O2.5 have been prepared by a novel synthetic process, which combines the co-precipitation method and a modified molten salt method. By using a moderate excess of 0.5LiNO3-0.5LiOH eutectic salts as molten media and reactants, the usage of deionized water or alcohol in the subsequent wash process is successfully reduced, compared with the traditional molten salt method. The materials with different excess Li salt content, Li/M (M = Ni + Mn) = 1.55, 1.65, 1.75, 1.85, 1.95, 2.05, molar ratio, show distinct differences in their …


A Comparison Of Chemical And Electrochemical Synthesis Of Pedot: Dextran Sulphate For Bio-Application, Leo Stevens, David G. Harman, Kerry J. Gilmore, Marc In Het Panhuis, Gordon G. Wallace Jan 2015

A Comparison Of Chemical And Electrochemical Synthesis Of Pedot: Dextran Sulphate For Bio-Application, Leo Stevens, David G. Harman, Kerry J. Gilmore, Marc In Het Panhuis, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Poly(3,4-ethylenedioxythiophene) (PEDOT) is an organic conducting polymer that has been the focus of significant research over the last decade, in both energy and biological applications. Most commonly, PEDOT is doped by the artificial polymer polystyrene sulfonate due to the excellent electrical characteristics yielded by this pairing. The biopolymer dextran sulphate (DS) has been recently reported as a promising alternative to PEDOT: PSS for biological application, having electrical properties rivaling PEDOT: PSS, complimented by the potential bioactivity of the polysaccharide. In this work we compared chemical and electrochemical polymerisations of PEDOT: DS in terms of their impact on the electrical, morphological …


Electro-Oxidation And Reduction Of H2 On Platinum Studied By Scanning Electrochemical Microscopy For The Purpose Of Local Detection Of H2 Evolution, Seyed S. Jamali, Simon E. Moulton, Dennis E. Tallman, Jan Weber, Gordon G. Wallace Jan 2015

Electro-Oxidation And Reduction Of H2 On Platinum Studied By Scanning Electrochemical Microscopy For The Purpose Of Local Detection Of H2 Evolution, Seyed S. Jamali, Simon E. Moulton, Dennis E. Tallman, Jan Weber, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Electrochemical detection of H-2 using scanning electrochemical microscopy (SECM) has shown to hold great promise as a sensitive characterization method with high spatial resolution for active surfaces generating H-2. Herein, the factors contributing to the current that is measured by SECM in generation/collection mode for H-2 detection are studied. In particular, the concentration gradient of H-2 at the substrate, the H-2/H+ recycling between the SECM tip and substrate and hemispherical profile of H-2 diffusion has been discussed. It was postulated that H-2/H+ recycling plays a dominant role in the oxidative current measured in generation/collection mode of SECM when the microelectrode …


Influence Of Biopolymer Loading On The Physiochemical And Electrochemical Properties Of Inherently Conducting Polymer Biomaterials, Paul J. Molino, Peter C. Innis, Michael J. Higgins, Robert M. I Kapsa, Gordon G. Wallace Jan 2015

Influence Of Biopolymer Loading On The Physiochemical And Electrochemical Properties Of Inherently Conducting Polymer Biomaterials, Paul J. Molino, Peter C. Innis, Michael J. Higgins, Robert M. I Kapsa, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

The physicochemical and electrochemical properties of polypyrrole (PPy) doped with the biological dopant dextran sulphate (DS) were shown to be significantly altered as a function of varying the salt concentration (0.2, 2 or 20 mg/ml) in the polymerisation electrolyte. Films grown in the presence of 0.2 mg/ml DS generated the highest potential during galvanostatic growth, with the potential decreasing with each subsequent increase in DS concentration. The electroactivity of the polymers was similar for all three DS concentrations, with the 20 mg/ml film drawing slightly more current upon reduction in PBS. Increasing the DS concentration reduced film interfacial roughness and …


Effects Of Cu Substitution For Sn On The Electrochemical Performance Of La0.7mg0.3al0.3mn0.4sn0.5−Xcuxni3.8 (X = 0-0.5) Alloys For Ni-Mh Batteries, Julio Cesar Serafim Casini, Zaiping Guo, Hua-Kun Liu, Rubens Nunes Faria, Hidetoshi Takiishi Jan 2015

Effects Of Cu Substitution For Sn On The Electrochemical Performance Of La0.7mg0.3al0.3mn0.4sn0.5−Xcuxni3.8 (X = 0-0.5) Alloys For Ni-Mh Batteries, Julio Cesar Serafim Casini, Zaiping Guo, Hua-Kun Liu, Rubens Nunes Faria, Hidetoshi Takiishi

Australian Institute for Innovative Materials - Papers

The effects of substitution of Cu for Sn on the electrochemical discharge capacity performance of La0.7Mg0.3Al0.3Mn0.4Sn0.5−xCuxNi3.8 (x = 0.0, 0.1, 0.2, 0.3, and 0.5) negative electrode alloys were investigated. Results indicate that increasing Cu content enhanced electrochemical behavior by increasing the maximum discharge capacity from 239.8 mA·h/g (x = 0) to 305.2 mA·h/g (x = 0.5), the discharge capacity retention at the 100th cycle from 78.0% (x = 0) to 81.8% (x = 0.5), and the high rate dischargeability (HRD) from 25.7% (x = 0) to 80.6% (x = 0.5).


3d Braided Yarns To Create Electrochemical Cells, Chen Zhao, Syamak Farajikhah, Caiyun Wang, Javad Foroughi, Xiaoteng Jia, Gordon G. Wallace Jan 2015

3d Braided Yarns To Create Electrochemical Cells, Chen Zhao, Syamak Farajikhah, Caiyun Wang, Javad Foroughi, Xiaoteng Jia, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

The demands for new configurations of electrochemical cells continue to grow and novel approaches are being enabled by the advent of new electromaterials and novel fabrication strategies. Wearable energy storage devices that can be seamlessly integrated into garments are a critical component of the wearable electronics genre. Recently, flexible yarn supercapacitors have attracted significant attention due to their ability to be integrated into fabrics, or stitched into existing textiles. Large-scale production of yarn supercapacitors using conventional manufacturing processes, however, is still a challenge. Here, we introduce the use of braiding technology to achieve a predetermined arrangement of fibre electrodes, the …


Porous Nanoarchitectures Of Spinel-Type Transition Metal Oxides For Electrochemical Energy Storage Systems, Min-Sik Park, Jeonghun Kim, Ki Jae Kim, Jongwon Lee, Jung Ho Kim, Yusuke Yamauchi Jan 2015

Porous Nanoarchitectures Of Spinel-Type Transition Metal Oxides For Electrochemical Energy Storage Systems, Min-Sik Park, Jeonghun Kim, Ki Jae Kim, Jongwon Lee, Jung Ho Kim, Yusuke Yamauchi

Australian Institute for Innovative Materials - Papers

Transition metal oxides possessing two kinds of metals (denoted as AxB3-xO4, which is generally defined as a spinel structure; A, B = Co, Ni, Zn, Mn, Fe, etc.), with stoichiometric or even non-stoichiometric compositions, have recently attracted great interest in electrochemical energy storage systems (ESSs). The spinel-type transition metal oxides exhibit outstanding electrochemical activity and stability, and thus, they can play a key role in realising cost-effective and environmentally friendly ESSs. Moreover, porous nanoarchitectures can offer a large number of electrochemically active sites and, at the same time, facilitate transport of charge carriers (electrons and ions) during energy storage reactions. …


Porous Amorphous Ge/C Composites With Excellent Electrochemical Properties, Xiu Li, Wei Guo, Qian Wan, Jianmin Ma Jan 2015

Porous Amorphous Ge/C Composites With Excellent Electrochemical Properties, Xiu Li, Wei Guo, Qian Wan, Jianmin Ma

Australian Institute for Innovative Materials - Papers

Porous amorphous germanium/carbon (Ge/C) composites, which were synthesized through the reduction/carbonization of germanium oxide/oleic acid precursors, could exhibit a high-capacity, high-rate and long-life performance due to the synergistic effect of the porous structure and carbon.


Optical And Electrochemical Methods For Determining The Effective Area And Charge Density Of Conducting Polymer Modified Electrodes For Neural Stimulation, Alexander R. Harris, Paul Molino, Robert M. I Kapsa, Graeme M. Clarke, Antonio Paolini, Gordon G. Wallace Jan 2014

Optical And Electrochemical Methods For Determining The Effective Area And Charge Density Of Conducting Polymer Modified Electrodes For Neural Stimulation, Alexander R. Harris, Paul Molino, Robert M. I Kapsa, Graeme M. Clarke, Antonio Paolini, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Neural stimulation is used in the cochlear implant, bionic eye, and deep brain stimulation, which involves implantation of an array of electrodes into a patient's brain. The current passed through the electrodes is used to provide sensory queues or reduce symptoms associated with movement disorders and increasingly for psychological and pain therapies. Poor control of electrode properties can lead to suboptimal performance; however, there are currently no standard methods to assess them, including the electrode area and charge density. Here we demonstrate optical and electrochemical methods for measuring these electrode properties and show the charge density is dependent on electrode …


Applications Of Scanning Electrochemical Microscopy (Secm) For Local Characterization Of Az31 Surface During Corrosion In A Buffered Media, Sina S. Jamali, Simon E. Moulton, Dennis E. Tallman, Maria Forsyth, Jan Weber, Gordon G. Wallace Jan 2014

Applications Of Scanning Electrochemical Microscopy (Secm) For Local Characterization Of Az31 Surface During Corrosion In A Buffered Media, Sina S. Jamali, Simon E. Moulton, Dennis E. Tallman, Maria Forsyth, Jan Weber, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Different modes of scanning electrochemical mapping (SECM) such as surface generation/tip collection (SG/TC), amperometry, AC-SECM and potentiometry were employed to characterize the active/passive domains, hydrogen gas (H2) evolution and local pH on a corroding surface of AZ31 in simulated biological fluid (SBF). It was found that the main domains of H2 evolution are associated with lower insulating properties of the surface as well as higher local pH. The near surface pH was found to be highly alkaline indicating that, even in a buffered solution such as SBF, the local pH on a corroding AZ31 surface can be significantly different to …


Enhanced Electrochemical Properties Of Cobalt Doped Manganese Dioxide Nanowires, Byoung Chul Kim, C Justin Raj, W J. Cho, W G. Lee, Hyeon Taek Jeong, K H. Yu Jan 2014

Enhanced Electrochemical Properties Of Cobalt Doped Manganese Dioxide Nanowires, Byoung Chul Kim, C Justin Raj, W J. Cho, W G. Lee, Hyeon Taek Jeong, K H. Yu

Australian Institute for Innovative Materials - Papers

The various molar concentrations of cobalt doped manganese dioxide (Co-MnO2) nanostructures were synthesized by an hydrothermal technique for electrochemical supercapacitor application. The X-ray diffraction analysis showed that the samples were composed of multiphase of MnO2 with dominant reflections of γ-MnO2 structure of crystallization. The morphological studies displayed the existence of MnO 2 nanowires with the width of 10-20 nm and showing a good degree of crystallization. The electrochemical characterization was performed using cyclic voltammetry, galvanostatic charge/discharge test and impedance spectroscopy in 1 M Na2SO4 aqueous electrolyte. All the samples exhibit a typical ideal capacitive behavior with an increasing order of …


Electrochemical Nonenzymatic Sensor Based On Coo Decorated Reduced Graphene Oxide For The Simultaneous Determination Of Carbofuran And Carbaryl In Fruits And Vegetables, Mingyan Wang, Junrao Huang, Meng Wang, Dongen Zhang, Jun Chen Jan 2014

Electrochemical Nonenzymatic Sensor Based On Coo Decorated Reduced Graphene Oxide For The Simultaneous Determination Of Carbofuran And Carbaryl In Fruits And Vegetables, Mingyan Wang, Junrao Huang, Meng Wang, Dongen Zhang, Jun Chen

Australian Institute for Innovative Materials - Papers

A novel nonenzymatic sensor based on cobalt (II) oxide (CoO)-decorated reduced graphene oxide (rGO) was developed for the detection of carbofuran (CBF) and carbaryl (CBR). Two well-defined and separate differential pulse voltammetric peaks for CBF and CBR were obtained with the CoO/rGO sensor in a mixed solution, making the simultaneous detection of both carbamate pesticides possible. The nonenzymatic sensor demonstrated a linear relationship over a wide concentration range of 0.2–70 μM (R = 0.9996) for CBF and 0.5–200 μM (R = 0.9995) for CBR. The lower detection limit of the sensor was 4.2 μg/L for CBF and 7.5 μg/L for …


A Method For Systematic Electrochemical And Electrophysiological Evaluation Of Neural Recording Electrodes, Alexander R. Harris, Simeon J. Morgan, Gordon G. Wallace, Antonio Paolini Jan 2014

A Method For Systematic Electrochemical And Electrophysiological Evaluation Of Neural Recording Electrodes, Alexander R. Harris, Simeon J. Morgan, Gordon G. Wallace, Antonio Paolini

Australian Institute for Innovative Materials - Papers

New materials and designs for neural implants are typically tested separately, with a demonstration of performance but without reference to other implant characteristics. This precludes a rational selection of a particular implant as optimal for a particular application and the development of new materials based on the most critical performance parameters. This article develops a protocol for in vitro and in vivo testing of neural recording electrodes. Recommended parameters for electrochemical and electrophysiological testing are documented with the key steps and potential issues discussed. This method eliminates or reduces the impact of many systematic errors present in simpler in vivo …


Synthesis And Electrochemical Properties Of Wo3/C For Lithium Ion Batteries, Hong Gao, Shuijin S. Yang, Chuanqi Feng, Jiazhao Wang, Zaiping Guo Jan 2014

Synthesis And Electrochemical Properties Of Wo3/C For Lithium Ion Batteries, Hong Gao, Shuijin S. Yang, Chuanqi Feng, Jiazhao Wang, Zaiping Guo

Australian Institute for Innovative Materials - Papers

WO3/C nanorods were prepared by a combination of hydrothermal synthesis method and the solid phase reaction method, using (NH4)10H2(W2O7)6, H2C2O4·2H2O and glucose(carbon source) as raw materials. The effects of different proportions of glucose on the morphologies and electrochemical properties of the final products were systematically investigated. The results showed that the WO3/C nanorods prepared with the 10 wt.% glucose as carbon source exhibited the highest reversible specific capacity (807 mAh g-1) at current density …


Simple Synthesis Of Yolk-Shelled Znco2o4 Microspheres Towards Enhancing The Electrochemical Performance Of Lithium-Ion Batteries In Conjunction With A Sodium Carboxymethyl Cellulose Binder, Jingfa Li, Jiazhao Wang, David Wexler, Dongqi Shi, Jianwen Liang, Hua-Kun Liu, Shenglin Xiong, Yitai Qian Jan 2013

Simple Synthesis Of Yolk-Shelled Znco2o4 Microspheres Towards Enhancing The Electrochemical Performance Of Lithium-Ion Batteries In Conjunction With A Sodium Carboxymethyl Cellulose Binder, Jingfa Li, Jiazhao Wang, David Wexler, Dongqi Shi, Jianwen Liang, Hua-Kun Liu, Shenglin Xiong, Yitai Qian

Australian Institute for Innovative Materials - Papers

Mixed metal oxides have been attracting more and more attention recently because of their advantages and superiorities, which can improve the electrochemical performance of single metal oxides. These advantages include structural stability, good electronic conductivity, and reversible capacity. In this work, uniform yolk-shelled ZnCo2O4 microspheres were synthesized by pyrolysis of ZnCo-glycolate microsphere precursors which were prepared via a simple refluxing route without any precipitant or surfactant. The formation process of the yolk-shelled microsphere structure during the thermal decomposition of ZnCo-glycolate is discussed, which is mainly based on the heterogeneous contraction caused by non-equilibrium heat treatment. The performances of the as-prepared …


The Electrochemical Properties Of High-Capacity Sulfur/Reduced Graphene Oxide With Different Electrolyte Systems, Yunxiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou Jan 2013

The Electrochemical Properties Of High-Capacity Sulfur/Reduced Graphene Oxide With Different Electrolyte Systems, Yunxiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

The lithium/sulfur battery is a promising electrochemical system with high capacity, which is well-known to undergo a complex multistep reaction during the discharge process. Two types of electrolytes including poly (ethylene glycol) dimethyl ether (PEGDME)-based and 1.3 - dioxolane (DOL)/ dimethoxyethane (DME)-based electrolytes were investigated here. Furthermore, LiNO3 additive was introduced into the electrolyte in order to effectively eliminate the overcharge effect. The lithium sulfur battery with 1.0 M LiN(CF3SO2)2 in PEGME with 0.1 M LiNo3 shows highly stable reversible capacity of 624.8 mAh g-1 after 200 cycles and improved average coulombic efficiency of 98 percent.