Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Australian Institute for Innovative Materials - Papers

Composite

Articles 1 - 29 of 29

Full-Text Articles in Physical Sciences and Mathematics

Flexible Polycaprolactone (Pcl) Supercapacitor Based On Reduced Graphene Oxide (Rgo)/Single-Wall Carbon Nanotubes (Swnts) Composite Electrodes, Hyeon Taek Jeong, Yong-Ryeol Kim, Byung Chul Kim Jan 2017

Flexible Polycaprolactone (Pcl) Supercapacitor Based On Reduced Graphene Oxide (Rgo)/Single-Wall Carbon Nanotubes (Swnts) Composite Electrodes, Hyeon Taek Jeong, Yong-Ryeol Kim, Byung Chul Kim

Australian Institute for Innovative Materials - Papers

The reduced graphene oxide (rGO)/single-wall carbon nanotubes (SWNTs) composites are coated onto the polycaprolactone (PCL) substrate via spray coating technique to prepare a flexible supercapacitor. The electrochemical properties of the flexible PCL supercapacitor as a function of bending cycles and angles are evaluated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge tests. The EIS and charge/discharge curves of the flexible PCL supercapacitor exhibit capacitive behavior even after prolonged bending cycles up to 500. The highest capacitance value of the unbent PCL supercapacitor is 52.5 F g-1 which retained 65% after 500 bending with 6000th galvanostatic charge/discharge cycles.


Significant Enhancement Of The Cycling Performance And Rate Capability Of The P/C Composite Via Chemical Bonding (P-C), Weijie Li, Shulei Chou, Jiazhao Wang, Hua-Kun Liu, S X. Dou Jan 2016

Significant Enhancement Of The Cycling Performance And Rate Capability Of The P/C Composite Via Chemical Bonding (P-C), Weijie Li, Shulei Chou, Jiazhao Wang, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

Among anode materials for sodium ion batteries, red phosphorus is a very promising one due to its abundant reserves, low-cost and high theoretical capacity of 2600 mA h g-1. However, its huge volume expansion on sodiation (∼490%) and poor conductivity leads to dramatic capacity decay, restraining its practical application. To improve the electrochemical performance, here, we prepared a red phosphorus and graphene nanoplate composite using cheap red P and natural graphite as the starting materials via a simple and scalable ball-milling method. The phosphorus-carbon bond formed during the milling process improves the electrical connectivity between P particles and graphene nanoplates, …


A Methodical Approach For Fabrication Of Binder-Free Li2s-C Composite Cathode With High Loading Of Active Material For Li-S Battery, Mohammad Kaiser, Xin Liang, Hua-Kun Liu, S X. Dou, Jiazhao Wang Jan 2016

A Methodical Approach For Fabrication Of Binder-Free Li2s-C Composite Cathode With High Loading Of Active Material For Li-S Battery, Mohammad Kaiser, Xin Liang, Hua-Kun Liu, S X. Dou, Jiazhao Wang

Australian Institute for Innovative Materials - Papers

Lithium sulfide (Li2S), which has a theoretical capacity of 1166 mA h/g, is considered as a promising cathode material for the Li-S battery. The electrochemical performance of microsized Li2S is impaired, however, by its low electrical conductivity as well as first cycle high activation potential problem. In this work, microsized Li2S powder had been ball-milled with different carbon sources to synthesize Li2S-C composites as well as to find the suitable carbon sources, which were then capillary-deposited in three-dimensional multi-layered Ni foam from a dioxolane-containing mixture to fabricate a binder-free Li2S-C composite cathode. A large amount of active material (∼5 mg/cm2) …


Reduced Graphene Oxide And Polypyrrole/Reduced Graphene Oxide Composite Coated Stretchable Fabric Electrodes For Supercapacitor Application, Chen Zhao, Kewei Shu, Caiyun Wang, Sanjeev Gambhir, Gordon G. Wallace Jan 2015

Reduced Graphene Oxide And Polypyrrole/Reduced Graphene Oxide Composite Coated Stretchable Fabric Electrodes For Supercapacitor Application, Chen Zhao, Kewei Shu, Caiyun Wang, Sanjeev Gambhir, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

The advent of self-powered functional garments has given rise to a demand for stretchable energy storage devices that are amendable to integration into textile structures. The electromaterials (anode, cathode and separator) are expected to sustain a deformation of 3% to 55% associated with body movement. Here, we report a stretchable fabric supercapacitor electrode using commonly available nylon lycra fabric as the substrate and graphene oxide (GO) as a dyestuff. It was prepared via a facile dyeing approach followed by a mild chemical reduction. This reduced graphene oxide (rGO) coated fabric electrode retains conductivity at an applied strain of up to …


Free-Standing Composite Hydrogel Films For Superior Volumetric Capacitance, Mahmoud Moussa, Zhiheng Zhao, Maher F. El-Kady, Hua-Kun Liu, Andrew Michelmore, Nobuyuki Kawashima, Peter Majewski, Jun Ma Jan 2015

Free-Standing Composite Hydrogel Films For Superior Volumetric Capacitance, Mahmoud Moussa, Zhiheng Zhao, Maher F. El-Kady, Hua-Kun Liu, Andrew Michelmore, Nobuyuki Kawashima, Peter Majewski, Jun Ma

Australian Institute for Innovative Materials - Papers

High volumetric capacitance is vital for the development of wearable and portable energy storage devices. We herein introduce a novel simple route for the fabrication of a highly porous, binder-free and free-standing polyaniline/reduced graphene oxide composite hydrogel (PANi/graphene hydrogel) as an electrode with a packing density of 1.02 g cm-3. PANi played critical roles in gelation, which include reduction, crosslinking, creation of pseudocapacitance and as a spacer preventing graphene sheets from stacking. The composite hydrogel film delivered a volumetric capacitance of 225.42 F cm-3 with a two-electrode supercapacitor configuration, which was enhanced to 592.96 F cm-3 …


Porous Agpd-Pd Composite Nanotubes As Highly Efficient Electrocatalysts For Lithium-Oxygen Batteries, Wenbin Luo, Xuanwen Gao, Shulei Chou, Jiazhao Wang, Hua-Kun Liu Jan 2015

Porous Agpd-Pd Composite Nanotubes As Highly Efficient Electrocatalysts For Lithium-Oxygen Batteries, Wenbin Luo, Xuanwen Gao, Shulei Chou, Jiazhao Wang, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Porous AgPd-Pd composite nanotubes (NTs) are used as an efficient bifunctional catalyst for the oxygen reduction and evolution reactions in lithium-oxygen batteries. The porous NT structure can facilitate rapid O2 and electrolyte diffusion through the NTs and provide abundant catalytic sites, forming a continuous conductive network throughout the entire energy conversion process, with excellent cycling performance.


Split-Half-Tubular Polypyrrole@Sulfur@Polypyrrole Composite With A Novel Three-Layer-3d Structure As Cathode For Lithium/Sulfur Batteries, Xin Liang, Mingang Zhang, Mohammad Kaiser, Xuanwen Gao, Konstantin Konstantinov, Richard Tandiono, Zhaoxiang Wang, Hua-Kun Liu, S X. Dou, Jiazhao Wang Jan 2015

Split-Half-Tubular Polypyrrole@Sulfur@Polypyrrole Composite With A Novel Three-Layer-3d Structure As Cathode For Lithium/Sulfur Batteries, Xin Liang, Mingang Zhang, Mohammad Kaiser, Xuanwen Gao, Konstantin Konstantinov, Richard Tandiono, Zhaoxiang Wang, Hua-Kun Liu, S X. Dou, Jiazhao Wang

Australian Institute for Innovative Materials - Papers

Polypyrrole@Sulfur@Polypyrrole composite with a novel three-layer-3D-structure, which consists of an external polypyrrole coating layer, an intermediate sulfur filling layer, and an internal polypyrrole split-half-tube conducting matrix layer, has been synthesized by the oxidative chemical polymerization method and chemical precipitation method in this article. Due to this unique three-layer-structure, the discharge specific capacity of Polypyrrole@Sulfur@Polypyrrole composite cathode retained at 554mAh g-1 after 50 cycles, which represents 68.8% retention of the initial discharge specific capacity. In comparison, the Sulfur@Polypyrrole composite cathode, with the same components as Polypyrrole@Sulfur@Polypyrrole composite, but without the three-layer-structure, has the discharge specific capacity of 370mAh g-1 after 50 …


Novel Germanium/Polypyrrole Composite For High Power Lithium-Ion Batteries, Xuanwen Gao, Wenbin Luo, Chao Zhong, David Wexler, Shulei Chou, Hua-Kun Liu, Zhicong Shi, Guohua Chen, Kiyoshi Ozawa, Jiazhao Wang Jan 2014

Novel Germanium/Polypyrrole Composite For High Power Lithium-Ion Batteries, Xuanwen Gao, Wenbin Luo, Chao Zhong, David Wexler, Shulei Chou, Hua-Kun Liu, Zhicong Shi, Guohua Chen, Kiyoshi Ozawa, Jiazhao Wang

Australian Institute for Innovative Materials - Papers

Nano-Germanium/polypyrrole composite has been synthesized by chemical reduction method in aqueous solution. The Ge nanoparticles were directly coated on the surface of the polypyrrole. The morphology and structural properties of samples were determined by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Thermogravimetric analysis was carried out to determine the polypyrrole content. The electrochemical properties of the samples have been investigated and their suitability as anode materials for the lithium-ion battery was examined. The discharge capacity of the Ge nanoparticles calculated in the Ge-polypyrrole composite is 1014 mAh g-1 after 50 cycles at 0.2 C rate, which is …


Three-Dimensional-Network Li3v2(Po4) 3/C Composite As High Rate Lithium Ion Battery Cathode Material And Its Compatibility With Ionic Liquid Electrolytes, Jiantie Xu, Shulei Chou, Cuifeng Zhou, Qinfen Gu, Hua-Kun Liu, S X. Dou Jan 2014

Three-Dimensional-Network Li3v2(Po4) 3/C Composite As High Rate Lithium Ion Battery Cathode Material And Its Compatibility With Ionic Liquid Electrolytes, Jiantie Xu, Shulei Chou, Cuifeng Zhou, Qinfen Gu, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

A high performance Li3V2(PO4)3 cathode material for lithium ion batteries was synthesized by the microwave-assisted hydrothermal method followed by a post annealing process. The synchrotron X-ray diffraction analysis results confirmed that single-phase Li3V2(PO4)3 with monoclinic structure was obtained. Scanning electron microscope and transmission electron microscope images revealed that the as-prepared Li3V 2(PO4)3 was composed of nanowires and microsized particles. Electrochemical results demonstrated that the Li 3V2(PO4)3 electrode measured at 10 C after 500 cycles can deliver discharge capacities of 85.4 mAh g-1 and 103.4 mAh g-1, with a capacity retention of 99.3% and 95.9%, in the voltage ranges of 3.0-4.3 …


Direct Synthesis Of Rgo/Cu2o Composite Films On Cu Foil For Supercapacitors, Xiangmao Dong, Kun Wang, Chongjun Zhao, Xiuzhen Qian, Shi Chen, Zhen Li, Hua-Kun Liu, S X. Dou Jan 2014

Direct Synthesis Of Rgo/Cu2o Composite Films On Cu Foil For Supercapacitors, Xiangmao Dong, Kun Wang, Chongjun Zhao, Xiuzhen Qian, Shi Chen, Zhen Li, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

Reduced graphene oxide/cuprous oxide (RGO/Cu2O) composite films were directly synthesized on the surface of copper foil substrates through a straight redox reaction between GO and Cu foil via a hydrothermal approach. Characterization of the resultant composites with X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and field emission scanning electron microscope (FESEM) confirms the formation of Cu2O and reduction of GO, in which Cu2O nanoparticles were well covered by RGO. The resultant composites (referred to as RGO/Cu2O/Cu) were directly used as electrodes for supercapacitors, and their electrochemical performance was assessed by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectrometry …


A Germanium/Single-Walled Carbon Nanotube Composite Paper As A Free-Standing Anode For Lithium-Ion Batteries, Jun Wang, Jiazhao Wang, Ziqi Sun, Xuanwen Gao, Chao Zhong, Shulei Chou, Hua-Kun Liu Jan 2014

A Germanium/Single-Walled Carbon Nanotube Composite Paper As A Free-Standing Anode For Lithium-Ion Batteries, Jun Wang, Jiazhao Wang, Ziqi Sun, Xuanwen Gao, Chao Zhong, Shulei Chou, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Paper-like free-standing germanium (Ge) and single-walled carbon nanotube (SWCNT) composite anodes were synthesized by the vacuum filtration of Ge/SWCNT composites, which were prepared by a facile aqueous-based method. The samples were characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Electrochemical measurements demonstrate that the Ge/SWCNT composite paper anode with the weight percentage of 32% Ge delivered a specific discharge capacity of 417 mA h g−1 after 40 cycles at a current density of 25 mA g−1, 117% higher than the pure SWCNT paper anode. The SWCNTs not only function as a flexible mechanical support for …


Strain-Responsive Polyurethane/Pedot:Pss Elastomeric Composite Fibers With High Electrical Conductivity, Mohammad Ziabari Seyedin, Joselito M. Razal, Peter C. Innis, Gordon G. Wallace Jan 2014

Strain-Responsive Polyurethane/Pedot:Pss Elastomeric Composite Fibers With High Electrical Conductivity, Mohammad Ziabari Seyedin, Joselito M. Razal, Peter C. Innis, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

It is a challenge to retain the high stretchability of an elastomer when used in polymer composites. Likewise, the high conductivity of organic conductors is typically compromised when used as filler in composite systems. Here, it is possible to achieve elastomeric fiber composites with high electrical conductivity at relatively low loading of the conductor and, more importantly, to attain mechanical properties that are useful in strain-sensing applications. The preparation of homogenous composite formulations from poly­urethane (PU) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) that are also processable by fiber wet-spinning techniques are systematically evaluated. With increasing PEDOT:PSS loading in the fiber composites, the Young's …


Rapid Synthesis Of Li4ti5o12/Graphene Composite With Superior Rate Capability By A Microwave-Assisted Hydrothermal Method, Yi Shi, Jie Gao, Hector D. Abruna, Hua-Kun Liu, Huijun Li, Jiazhao Wang, Yuping Wu Jan 2014

Rapid Synthesis Of Li4ti5o12/Graphene Composite With Superior Rate Capability By A Microwave-Assisted Hydrothermal Method, Yi Shi, Jie Gao, Hector D. Abruna, Hua-Kun Liu, Huijun Li, Jiazhao Wang, Yuping Wu

Australian Institute for Innovative Materials - Papers

Li4Ti5O12 microspheres composed of nanoflakes wrapped in graphene nanosheets have been synthesized by an advanced microwave-hydrothermal (MW-HT) method for the preparation following by an annealing step. Microwave-assisted synthesis processes are appealing, as they can rapidly synthesize materials with a high degree of control of particle size and morphology at low cost. The resultant composite reveals a unique loose structure which could avoid the restacking of graphene sheets and offer rapid lithium ion diffusion paths. Therefore the Li4Ti5O12/graphene electrode has highly desirable properties: a specific capacity approaching the theoretical value, stable cycling, and exceptional rate capability. The composite also can be …


Spin Memristive Magnetic Tunnel Junctions With Coo-Zno Nano Composite Barrier, Qiang Li, Ting-Ting Shen, Yan-Ling Cao, Kun Zhang, Shi-Shen Yan, Yu-Feng Tian, Shi-Shou Kang, Ming-Wen Zhao, You-Yong Dai, Yan-Xue Chen, Guo-Lei Liu, Liang-Mo Mei, Xiaolin Wang, Peter Grunberg Jan 2014

Spin Memristive Magnetic Tunnel Junctions With Coo-Zno Nano Composite Barrier, Qiang Li, Ting-Ting Shen, Yan-Ling Cao, Kun Zhang, Shi-Shen Yan, Yu-Feng Tian, Shi-Shou Kang, Ming-Wen Zhao, You-Yong Dai, Yan-Xue Chen, Guo-Lei Liu, Liang-Mo Mei, Xiaolin Wang, Peter Grunberg

Australian Institute for Innovative Materials - Papers

The spin memristive devices combining memristance and tunneling magnetoresistance have promising applications in multibit nonvolatile data storage and artificial neuronal computing. However, it is a great challenge for simultaneous realization of large memristance and magnetoresistance in one nanoscale junction, because it is very hard to find a proper spacer layer which not only serves as good insulating layer for tunneling magnetoresistance but also easily switches between high and low resistance states under electrical field. Here we firstly propose to use nanon composite barrier layers of CoO-ZnO to fabricate the spin memristive Co/CoO-ZnO/Co magnetic tunnel junctions. The bipolar resistance switching ratio …


Performance Enhancement Of Single-Walled Nanotube-Microwave Exfoliated Graphene Oxide Composite Electrodes Using A Stacked Electrode Configuration, Dennis Antiohos, Mark S. Romano, Joselito M. Razal, Stephen Beirne, Phil Aitchison, Andrew I. Minett, Gordon G. Wallace, Jun Chen Jan 2014

Performance Enhancement Of Single-Walled Nanotube-Microwave Exfoliated Graphene Oxide Composite Electrodes Using A Stacked Electrode Configuration, Dennis Antiohos, Mark S. Romano, Joselito M. Razal, Stephen Beirne, Phil Aitchison, Andrew I. Minett, Gordon G. Wallace, Jun Chen

Australian Institute for Innovative Materials - Papers

We report the development of a stacked electrode supercapacitor cell using stainless steel meshes as the current collectors and optimised single walled nanotubes (SWNT)-microwave exfoliated graphene oxide (mw rGO) composites as the electrode material. The introduction of mw rGO into a SWNT matrix creates an intertwined porous structure that enhances the electroactive surface area and capacitive performance due to the 3-D hierarchical structure that is formed. The composite structure was optimised by varying the weight ratio of the SWNTs and mw rGO. The best performing ratio was the 90% SWNT-10% mw rGO electrode which achieved a specific capacitance of 306 …


Co3o4 Nanorods Decorated Reduced Graphene Oxide Composite For Oxygen Reduction Reaction In Alkaline Electrolyte, Mingyan Wang, Junrao Huang, Meng Wang, Dongen Zhang, Weimin Zhang, Weihua Li, Jun Chen Jan 2013

Co3o4 Nanorods Decorated Reduced Graphene Oxide Composite For Oxygen Reduction Reaction In Alkaline Electrolyte, Mingyan Wang, Junrao Huang, Meng Wang, Dongen Zhang, Weimin Zhang, Weihua Li, Jun Chen

Australian Institute for Innovative Materials - Papers

Highly uniform Co3O4 nanorods decorated on reduced graphene oxide (rGO) were prepared by a one-pot hydrothermal procedure. During the hydrothermal process, Co2+ ions were crystallized to Co3O4 nanorods and simultaneously GO was reduced to rGO to form the Co3O4/rGO hybrid. The Co3O4/rGO hybrid was characterized by scanning electron micrographs, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. The obtained Co3O4/rGO hybrid exhibits excellent electrocatalytic performance for oxygen reduction reaction.


Microstructure And Metal-Dielectric Transition Behaviour In A Percolative Al2o3-Fe Composite Via Selective Reduction, Zidong Zhang, Runhua Fan, Zhicheng Shi, Kelan Yan, Zhijia Zhang, Xiaolin Wang, S X. Dou Jan 2013

Microstructure And Metal-Dielectric Transition Behaviour In A Percolative Al2o3-Fe Composite Via Selective Reduction, Zidong Zhang, Runhua Fan, Zhicheng Shi, Kelan Yan, Zhijia Zhang, Xiaolin Wang, S X. Dou

Australian Institute for Innovative Materials - Papers

The electromagnetic (EM) medium plays a key role in many areas, such as communications, stealth technology, etc. Different EM properties are required for different applications. In this paper, we have obtained tunable EM properties in an Al2O3-Fe composite via selective reduction. By adjusting the content of one functional component, the composite shows totally different EM properties, in accordance with the predictions of effective medium theory. Hybrid EM behaviour is obtained near the percolation threshold, which has a close relationship with its microstructure.


Preparation And Characterisation Of Graphene Composite Hydrogels, Nicholas J. Whiteside, Gordon G. Wallace, Marc In Het Panhuis Jan 2013

Preparation And Characterisation Of Graphene Composite Hydrogels, Nicholas J. Whiteside, Gordon G. Wallace, Marc In Het Panhuis

Australian Institute for Innovative Materials - Papers

Stable dispersions containing graphene and gellan gum are used to form composite films. Incorporation of graphene into the gellan gum matrix results in mechanical reinforcement and electrical conductivity at low and high graphene loading fractions, respectively. Graphene-containing gellan gum hydrogel films are prepared by immersion of composite films in Ca2+ cross-linking solutions. The resulting hydrogels are electrically conducting and exhibit reinforcement compared to the corresponding gellan gum hydrogels. 2013 Elsevier B.V.


Fusion Of Nacre, Mussel, And Lotus Leaf: Bio-Inspired Graphene Composite Paper With Multifunctional Integration, Da Zhong, Qinglin Yang, Lin Guo, S X. Dou, Kesong Liu, Lei Jiang Jan 2013

Fusion Of Nacre, Mussel, And Lotus Leaf: Bio-Inspired Graphene Composite Paper With Multifunctional Integration, Da Zhong, Qinglin Yang, Lin Guo, S X. Dou, Kesong Liu, Lei Jiang

Australian Institute for Innovative Materials - Papers

Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide …


Simply Mixed Commercial Red Phosphorus And Carbon Nanotube Composite With Exceptionally Reversible Sodium-Ion Storage, Wei-Jie Li, Shulei Chou, Jia-Zhao Wang, Hua-Kun Liu, S X. Dou Jan 2013

Simply Mixed Commercial Red Phosphorus And Carbon Nanotube Composite With Exceptionally Reversible Sodium-Ion Storage, Wei-Jie Li, Shulei Chou, Jia-Zhao Wang, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

Recently, sodium ion batteries (SIBs) have been given intense attention because they are the most promising alternative to lithium ion batteries for application in renewable power stations and smart grid, owing to their low cost, their abundant natural resources, and the similar chemistry of sodium and lithium. Elemental phosphorus (P) is the most promising anode materials for SIBs with the highest theoretical capacity of 2596 mA h g-1, but the commercially available red phosphorus cannot react with Na reversibly. Here, we report that simply hand-grinding commercial microsized red phosphorus and carbon nanotubes (CNTs) can deliver a reversible capacity of 1675 …


Wet-Spinning Of Pedot:Pss/Functionalized-Swnts Composite: A Facile Route Toward Production Of Strong And Highly Conducting Multifunctional Fibers, Rouhollah Jalili, Joselito M. Razal, Gordon G. Wallace Jan 2013

Wet-Spinning Of Pedot:Pss/Functionalized-Swnts Composite: A Facile Route Toward Production Of Strong And Highly Conducting Multifunctional Fibers, Rouhollah Jalili, Joselito M. Razal, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

With the aim of fabricating multifunctional fibers with enhanced mechanical properties, electrical conductivity and electrochemical performance, we develop wet-spinning of composite formulation based on functionalized PEG-SWNT and PEDOT:PSS. The method of addition and loading are directly correlated to the quality and the ease of spinnability of the formulation and to the mechanical and electrical properties of the resultant fibers. Both the fiber modulus (Y) and strength (σ) scaled linearly with PEG-SWNT volume fraction (Vf). A remarkable reinforcement rate of dY/dVf = 417 GPa and dσ/dVf = 4 GPa were obtained when PEG-SWNTs at Vf ≤ 0.02. Further increase of PEG-SWNTs …


Synthesis And Electrochemical Characterization Of Lifepo4/C-Polypyrrole Composite Prepared By A Simple Chemical Vapor Deposition Method, Qiang Gong, Yu-Shi He, Yang Yang, Xiao Zhen Liao, Zi-Feng Ma Jan 2012

Synthesis And Electrochemical Characterization Of Lifepo4/C-Polypyrrole Composite Prepared By A Simple Chemical Vapor Deposition Method, Qiang Gong, Yu-Shi He, Yang Yang, Xiao Zhen Liao, Zi-Feng Ma

Australian Institute for Innovative Materials - Papers

A LiFePO4/C-polypyrrole (LiFePO4/C-PPy) composite as a high-performance cathode material is successfully prepared through a simple chemical vapor deposition (CVD) method. According to the transmission electron microscope (TEM) analysis, the surface of the LiFePO4/C is surrounded with PPy in the LiFePO4/C-PPy composite. The as-prepared LiFePO4/C-PPy material shows outstanding rate capability at 20°C and good cycle performance at 55°C in comparison with those of the bare LiFePO4/C material against Li anode. After 700 cycles, the discharge capacity of LiFePO4/C-PPy could still remain 110 mA h g−1 with …


Magnetic Properties And Microstructures Of Iron Oxide@Mesoporous Silica Core-Shell Composite For Applications In Magnetic Dye Separation, Weichang Hao, Yang Xi, Jingwei Hu, Tianmin Wang, Yi Du, X L. Wang Jan 2012

Magnetic Properties And Microstructures Of Iron Oxide@Mesoporous Silica Core-Shell Composite For Applications In Magnetic Dye Separation, Weichang Hao, Yang Xi, Jingwei Hu, Tianmin Wang, Yi Du, X L. Wang

Australian Institute for Innovative Materials - Papers

"In this report, hollow mesoporous silica (HMS) and iron oxide-hollow mesoporous silica (FexOy@HMS) core-shell composite were prepared by a one-step facile fabrication method. Transmission electron microscopy, X-ray diffraction, N-2 adsorption-desorption isotherms, and vibrating sample magnetometer were used to characterize the morphology, microstructure, and magnetic properties of the HMS and core-shell composite. The magnetic separability of FexOy@HMS core-shell composite was tested in Rhodamine B (Rh. B) dye solution. The results indicate that the core-shell composite can absorb Rh. B dyes molecules effectively up to 90.1%. (C) 2012 American Institute of Physics. [doi:10.1063/1.3670049]"


Exploiting High Quality Pedot:Pss-Swnt Composite Formulations For Wet-Spinning Multifunctional Fibers, Rouhollah Jalili, Joselito M. Razal, Gordon G. Wallace Jan 2012

Exploiting High Quality Pedot:Pss-Swnt Composite Formulations For Wet-Spinning Multifunctional Fibers, Rouhollah Jalili, Joselito M. Razal, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

In order to exploit the inherent properties of carbon nanotubes (CNT) in any polymer composite, systematic control of carbon nanotube loading and protocols that mitigate against CNT bundling are required. If such composites are to be rendered in fiber form via wet-spinning, then CNT bundling during the coagulation process must also be avoided. Here we have achieved this by utilizing highly exfoliated single walled carbon nanotubes (SWNT) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonicacid) (PEDOT:PSS) to obtain wet-spinnable composite formulations at various nanotube volume fractions (Vf). The addition of only 0.02 Vf of aggregate-free and individually dispersed SWNT resulted in a …


Lifepo4-Fe2p-C Composite Cathode: An Environmentally Friendly Promising Electrode Material For Lithium-Ion Battery, M. Mahfuzur Rahman, Jiazhao Wang, Rong Zeng, David Wexler, Hua-Kun Liu Jan 2012

Lifepo4-Fe2p-C Composite Cathode: An Environmentally Friendly Promising Electrode Material For Lithium-Ion Battery, M. Mahfuzur Rahman, Jiazhao Wang, Rong Zeng, David Wexler, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

In this investigation, the synthesis strategy is involved the creation of LiFePO4-Fe2P-C composites with a porous conductive architecture, which includes distinct regions or clusters containing antiferromagnetic LiFePO4 in close proximity to ferromagnetic Fe2P. The microstructure is achieved by using a simple ultra-fast solvent assisted manual grinding method, combined with solid state reaction, which can replace the time-consuming high energy ball milling method. The crystalline structure, morphology, and electrochemical characterization of the synthesised product are investigated systematically. The electrochemical performance is outstanding, especially the high C rate. The composite cathode is found to display specific capacity of 167 mAh g-1 at …


Bazr(0.8)Y(0.2)O(3-Delta)-Nio Composite Anodic Powders For Proton-Conducting Sofcs Prepared By A Combustion Method, Lei Bi, Emiliana Fabbri, Ziqi Sun, Enrico Traversa Jan 2011

Bazr(0.8)Y(0.2)O(3-Delta)-Nio Composite Anodic Powders For Proton-Conducting Sofcs Prepared By A Combustion Method, Lei Bi, Emiliana Fabbri, Ziqi Sun, Enrico Traversa

Australian Institute for Innovative Materials - Papers

BaZr0.8Y0.2O3-∂ (BZY)-NiO composite powders with different BZY-NiO weight ratios were prepared by a combustion method as anodes for proton-conducting solid oxide fuel cells (SOFCs). After heating to 1100°C for 6 h, the composite powders were made of a well-dispersed mixture of two phases, BZY and NiO. Chemical stability tests showed that the BZY-NiO anodic powders had good stability against CO2, whereas comparative tests under the same conditions showed degradation for BaCe0.7Zr0.1Y0.2O3-∂- NiO, which is at present the most used anode material for proton-conducting …


Influence Of Inductance Variation On Performance Of A Permanent Magnet Claw Pole Soft Magnetic Composite Motor, Youguang Guo, Jian Zhu, Zhi Lin, Haiyan Lu, Xiaolin Wang, Jiaxin Chen Jan 2008

Influence Of Inductance Variation On Performance Of A Permanent Magnet Claw Pole Soft Magnetic Composite Motor, Youguang Guo, Jian Zhu, Zhi Lin, Haiyan Lu, Xiaolin Wang, Jiaxin Chen

Australian Institute for Innovative Materials - Papers

Winding inductance is an important parameter in determining the performance of electrical machines, particularly those with large inductance variation. This paper investigates the influence of winding inductance variation on the performance of a three-phase three-stack claw pole permanent magnet motor with soft magnetic composite (SMC) stator by using an improved phase variable model. The winding inductances of the machine are computed by using a modified incremental energy method, based on three-dimensional nonlinear time-stepping magnetic field finite element analyses. The inductance computation and performance simulation are verified by the experimental results of an SMC claw pole motor prototype.


Room Temperature Magnetic-Field Manipulation Of Electrical Polarization In Multiferroic Thin Film Composite Bifeo3/La2/3ca1/3mno3, Zhenxiang Cheng, Xiaolin Wang Jan 2007

Room Temperature Magnetic-Field Manipulation Of Electrical Polarization In Multiferroic Thin Film Composite Bifeo3/La2/3ca1/3mno3, Zhenxiang Cheng, Xiaolin Wang

Australian Institute for Innovative Materials - Papers

The electrical polarization in an epitaxially BiFeO3 film grown on La2/3Ca1/3MnO3/SrTiO3 is observed to be enhanced greatly by a magnetic field at room temperature. The simultaneous ferromagnetic order and ferroelectric polarization shown by the BiFeO3 film causes the strong coupling of the magnetic and ferroelectric domains in the BiFeO3 films. It was proposed that the activation energy for the electrical polarization domains switching is reduced by the application of a magnetic field. As a result, the electrical polarization that can be switched by an electrical field is increased by the …


Ybco Coated Conductor Using Biaxially Textured Clad Composite Ni-Mn/Ni-Cr Substrate, D Q. Shi, S X. Dou, R. K. Ko, J K. Chung, H S. Kim, H S. Ha, K J. Song, C. Park Jan 2005

Ybco Coated Conductor Using Biaxially Textured Clad Composite Ni-Mn/Ni-Cr Substrate, D Q. Shi, S X. Dou, R. K. Ko, J K. Chung, H S. Kim, H S. Ha, K J. Song, C. Park

Australian Institute for Innovative Materials - Papers

A new biaxially textured composite tape of Ni–4.5% Mn/Ni–1.5% Cr was used as a substrate for a YBCO coated conductor through the RABiTS approach. Multi-layer CeO2/YSZ/Y2O3 buffer layers and YBCO film were deposited on the substrate by pulsed laser deposition. The deposition conditions of the buffer layers and the YBCO were studied and compared. Good biaxial textures have been obtained for buffer layers on composite Ni–4.5% Mn/Ni–1.5% Cr substrates. Scanning electron microscopy on sample cross-sections was used to examine the interface and diffusion of oxygen. The uniform formation of an Ni–Mn–O layer between NiO and …