Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 97

Full-Text Articles in Physical Sciences and Mathematics

Light-Matter Interactions In Quasi-Two-Dimensional Geometries, David James Lahneman Jan 2021

Light-Matter Interactions In Quasi-Two-Dimensional Geometries, David James Lahneman

Dissertations, Theses, and Masters Projects

Emergent phenomena that occur at length scales smaller than approximately half the wavelength of light cannot be resolved by conventional optical techniques due to the Abbe diffraction limit. Scattering-type scanning near-field infrared microscopy (S-SNIM) can circumvent this diffraction limit allowing infrared spectroscopy at nano-scale dimensions independent of the wavelength. Additionally, there is enhanced surface sensitivity resulting from this nanoconfinement of infrared light. S-SNIM is uniquely suitable to study a diverse range of material properties inaccessible by far-field optics in the infrared such as the optical properties of ultrathin films as well as hybrid light matter surface waves called polaritons. Initially, …


Competing And Cooperating Orders In The Three-Band Hubbard Model: A Comprehensive Quantum Monte Carlo And Generalized Hartree-Fock Study, Adam Chiciak Jan 2020

Competing And Cooperating Orders In The Three-Band Hubbard Model: A Comprehensive Quantum Monte Carlo And Generalized Hartree-Fock Study, Adam Chiciak

Dissertations, Theses, and Masters Projects

Significant progress has been made in studying strongly correlated electronic systems with major focus on understanding high-temperature superconductivity. At the center of these studies are the so-called cuprates, which are characterized by a quasi-2D Copper-Oxide plane in which superconductivity is believed to arise. From the theoretical point of view, the complex electronic structure of these materials makes a fully ab initio many-body computation a formidable task, so we are forced to focus on minimal models that can reproduce the physics, the most well known of which is known as the Hubbard Model, which relies on the Zhang-Rice singet notion to …


A First-Principles Study Of The Nature Of The Insulating Gap In Vo2, Christopher Hendriks Jan 2020

A First-Principles Study Of The Nature Of The Insulating Gap In Vo2, Christopher Hendriks

Dissertations, Theses, and Masters Projects

Upon cooling past a critical temperature Tc = 340 K Vanadium dioxide (VO2) exhibits a metal-insulator transition (MIT) from a metallic rutile R to an insulating monoclinic M1 phase. Other insulating phases, a monoclinic M2 and triclinic T, have been identifed and are accessible via strain or doping. Despite decades of research, the nature of the VO2 MIT is still not fully understood. In this work we present ab-initio hybrid density functional theory (DFT) calculations on the insulating phases, compare the results to experimental measurements and discuss their implications on our understanding of the VO2 MIT. Recent measurements on M1 …


Insulator To Metal Transition Dynamics Of Vanadium Dioxide Thin Films, Scott Madaras Jan 2020

Insulator To Metal Transition Dynamics Of Vanadium Dioxide Thin Films, Scott Madaras

Dissertations, Theses, and Masters Projects

Vanadium Dioxide (VO2) is a strongly correlated material which has been studied for many decades. VO2 has been proposed for uses in technologies such as optical modulators, IR modulators, optical switches and Mott memory devices. These technologies are taking advantage of VO2’s insulator to metal transition (IMT) and the corresponding changes to the optical and material properties. The insulator to metal transition in VO2 can be accessed by thermal heating, applied electric field, or ultra-fast photo induced processes. Recently, thin films of VO2 grown on Titanium Dioxide doped with Niobium (TiO2:Nb), have shown promise as a possible UV photo detector …


Growth Engineering And Characterization Of Vanadium Dioxide Films For Ultraviolet Detection, Jason Andrew Creeden Jan 2020

Growth Engineering And Characterization Of Vanadium Dioxide Films For Ultraviolet Detection, Jason Andrew Creeden

Dissertations, Theses, and Masters Projects

There is a need for efficient ultraviolet (UV) detectors in many fields, such as aerospace, automotive manufacturing, biology, environmental science, and defense, due to photomultiplier tubes (the currently available technology) often not meeting application constraints in weight, robustness, and power consumption. In my thesis, I demonstrate that high quality vanadium dioxide (VO2) thin films, epitaxially grown on niobium doped titanium dioxide substrates (TiO2:Nb), display a strong photoconductive response in the UV spectral range, making them promising candidates for photomultiplier-free UV photodetection. By adjusting the characteristics of the substrate and VO2 film, the samples achieve external quantum efficiency exceeding 100% (reaching …


Exotic Phases In Attractive Fermions: Charge Order, Pairing, And Topological Signatures, Peter Rosenberg Jul 2018

Exotic Phases In Attractive Fermions: Charge Order, Pairing, And Topological Signatures, Peter Rosenberg

Dissertations, Theses, and Masters Projects

Strongly interacting many-body systems remain a central challenge of modern physics. Recent developments in the field of ultra-cold atomic physics have opened a new window onto this enduring problem. Experimental progress has revolutionized the approach to studying many-body systems and the exotic behaviors that emerge in these systems. It is now possible to engineer and directly measure a variety of models that can capture the essential features of real materials without the added complexity of disorder, impurities, or complicated or irregular geometries. The parameters of these models can be freely tuned with tremendous precision. These experimental realizations are an ideal …


Superconducting Thin Films For The Enhancement Of Superconducting Radio Frequency Accelerator Cavities, Matthew Burton Nov 2017

Superconducting Thin Films For The Enhancement Of Superconducting Radio Frequency Accelerator Cavities, Matthew Burton

Dissertations, Theses, and Masters Projects

Bulk niobium (Nb) superconducting radio frequency (SRF) cavities are currently the preferred method for acceleration of charged particles at accelerating facilities around the world. However, bulk Nb cavities have poor thermal conductance, impose material and design restrictions on other components of a particle accelerator, have low reproducibility and are approaching the fundamental material-dependent accelerating field limit of approximately 50MV/m. Since the SRF phenomena occurs at surfaces within a shallow depth of ~1 µm, a proposed solution to this problem has been to utilize thin film technology to deposit superconducting thin films on the interior of cavities to engineer the active …


Infrared Spectroscopy And Nano-Imaging Of La0.67sr0.33mno3 Films, Peng Xu May 2017

Infrared Spectroscopy And Nano-Imaging Of La0.67sr0.33mno3 Films, Peng Xu

Dissertations, Theses, and Masters Projects

Charge transport properties of manganites can be significantly modified by temperature, chemical doping, strain, and interfacial boundaries. In this dissertation, we report studies on broadband far-field infrared spectroscopy and near-field infrared imaging of single crystalline thin films of Sr doped manganite LaMnO3 at 0.33 doping level. at this Sr-doping level, the manganite films undergo a phase transition between a ferromagnetic metallic phase at low temperatures to a paramagnetic, insulating phase at higher temperatures. The films were grown on different substrates with different thicknesses by pulsed laser deposition method. The temperature dependent far-field infrared data on 85 nm thick La0.67Sr0.33MnO3 (LSMO) …


Ultracold Rubidium And Potassium System For Atom Chip-Based Microwave And Rf Potentials, Austin R. Ziltz Jan 2015

Ultracold Rubidium And Potassium System For Atom Chip-Based Microwave And Rf Potentials, Austin R. Ziltz

Dissertations, Theses, and Masters Projects

In this dissertation we study the development of microwave and RF near-field potentials for use with atom chip trapped atomic gases. These potentials are inherently spin-dependent, able to target individual spin states simultaneously. In contrast with traditional atom chip potentials, these RF traps can be operated at arbitrary bias magnetic field strengths and thus be combined with magnetic Feshbach resonances. Furthermore, these potentials can strongly suppress the potential roughness that plagues traditional atom chip potentials. We present a dual chamber atom chip apparatus for generating ultracold 87Rb and 39K atomic gases. The apparatus produces quasi-pure Bose-Einstein condensates of 104 87Rb …


Electronic Properties Of Chiral Two-Dimensional Materials, Christopher Lawrence Charles Triola Jan 2015

Electronic Properties Of Chiral Two-Dimensional Materials, Christopher Lawrence Charles Triola

Dissertations, Theses, and Masters Projects

In this dissertation we study the electronic properties of certain two-dimensional chiral electron systems. We study the static and dynamic screening of gapped bilayer graphene and find important qualitative differences between the dielectric screening function obtained using a simplified 2-band model and that obtained using a more sophisticated 4-band model. We also formulate a continuum model to study the low-energy electronic properties of heterostructures formed by graphene on a strong three-dimensional topological insulator (TI) both for the case of commensurate and incommensurate stacking. We find that the proximity of the TI induces a strong enhancement of the spin-orbit coupling in …


Magneto-Optics And Magneto-Transport Studies On Thin Films For Sensor Applications, Kaida Yang Jan 2014

Magneto-Optics And Magneto-Transport Studies On Thin Films For Sensor Applications, Kaida Yang

Dissertations, Theses, and Masters Projects

Recent progress and interest have bought considerable effort to bear on the synthesis and opportunities of magnetic thin films in different fields. There are applications in many fields, including remote sensing, waveguide applications, hard drive applications, etc. at the College of William and Mary, we have focused on utilizing magnetic thin films in some of these applications and are deeply involved in the optimization process of the thin films.


Superconducting Thin Films For Srf Cavity Applications: A Route To Higher Field Gradient Linacs, Wiliam Michael Roach Jan 2014

Superconducting Thin Films For Srf Cavity Applications: A Route To Higher Field Gradient Linacs, Wiliam Michael Roach

Dissertations, Theses, and Masters Projects

Many linear accelerator (linac) applications rely on the use of superconducting radio frequency (SRF) cavities. In order to overcome the current field gradient limits imposed by the use of bulk niobium, a model involving the deposition of alternating superconducting-insulating-superconducting (SIS) thin films onto the interior surface of SRF cavities has been proposed. Since SRF performance is a surface phenomenon, the critical surface of these cavities is less than 1 micron thick, thus enabling the use of thin films. Before such approach can successfully be implemented fundamental studies correlating the microstructure and superconducting properties of thin films are needed. to this …


Advanced Topographic Characterization Of Variously Prepared Niobium Surfaces And Linkage To Rf Losses, Chen Xu Jan 2013

Advanced Topographic Characterization Of Variously Prepared Niobium Surfaces And Linkage To Rf Losses, Chen Xu

Dissertations, Theses, and Masters Projects

Superconducting radio frequency (SRF) technology is widely adopted in particle accelerators. The shallow penetration (∼ 40 nm) of the RF into superconducting niobium lends great importance to SRF cavity interior surface chemistry and topography. These in turn are strongly influenced by the chemical etching "surface clean-up" that follows fabrication.;The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions …


Magnetic Order And Dimensional Crossover In Optical Lattices With Repulsive Interaction, Jie Xu Jan 2013

Magnetic Order And Dimensional Crossover In Optical Lattices With Repulsive Interaction, Jie Xu

Dissertations, Theses, and Masters Projects

One of the most interesting and challenging problems in physics is understanding strongly correlated many-body systems, where strong interactions can yield many remarkable phenomena such as superfluidity in 4He, high-temperature superconductivity, etc. In order to attack these problems, we often need to reduce the complexity of the systems to simple models in hopes of getting better insights into the properties of the systems. The Hubbard model, the focus of this dissertation, is one of the most famous examples of such model, which describes a tunneling of electrons between nearest neighbor sites of a lattice with on-site interactions. This simple model …


Quantum Turbulence In Two Dimensional Bose-Einstein Condensates, Bo Zhang Jan 2011

Quantum Turbulence In Two Dimensional Bose-Einstein Condensates, Bo Zhang

Dissertations, Theses, and Masters Projects

We examine the energy cascades and quantum vortex structures in two-dimensional quantum turbulence through a special unitary time evolution algorithm. An early attempt at using the Lattice Boltzmann Method proved successful in correctly representing some features of the Nonlinear Schrodinger System (NLS), such as the phase shift following the one-dimensional soliton-soliton collision, as well as the two-dimentional modulation instability. However, to accurately evaluate NLS, the implicit Euler method is required to resolve the time evolution, which is computationally expensive. A more accurate and efficient method, the Quantum Lattice Gas model is employed to simulate the quantum turbulence governed by the …


Thin Film And Chemical Ordering Effects On The Magnetic Anisotropy In Binary Alloys, Jonathan Ronald Skuza Jan 2011

Thin Film And Chemical Ordering Effects On The Magnetic Anisotropy In Binary Alloys, Jonathan Ronald Skuza

Dissertations, Theses, and Masters Projects

This dissertation presents various investigations into the structure-property correlations in highly anisotropic FePt and FePd thin films and nanostructures. These binary alloy thin films may exhibit long-range chemical ordering (e.g. L10), which induces a strong uniaxial magnetic anisotropy whose orientation is dependent on the ordering direction in the thin film. The chemical ordering, and hence the magnetic anisotropy, in these thin films can be controlled and tailored through sputter deposition and ion implantation conditions followed by subsequent processing. Two novel fabrication methods, x-ray rapid thermal annealing (XRTA) and heavy ion implantation, successfully demonstrate the ability to obtain highly anisotropic nanometer-sized …


Enhanced Field Emission From Vertically Oriented Graphene By Thin Solid Film Coatings, Michael Bagge-Hansen Jan 2011

Enhanced Field Emission From Vertically Oriented Graphene By Thin Solid Film Coatings, Michael Bagge-Hansen

Dissertations, Theses, and Masters Projects

Recent progress and a coordinated national research program have brought considerable effort to bear on the synthesis and application of carbon nanostructures for field emission. at the College of William and Mary, we have developed field emission arrays of vertically oriented graphene (carbon nanosheets, CNS) that have demonstrated promising cathode performance, delivering emission current densities up to 2 mA/mm2 and cathode lifetime > 800 hours. The work function ( & phis;) of CNS and other carbonaceous cathode materials has been reported to be &phis;∼4.5-5.1 eV. The application of low work function thin films can achieve several orders of magnitude enhancement of …


First-Principles Calculations Of Nuclear Magnetic Resonance Chemical Shielding Tensors In Complex Ferroelectric Perovskites, Daniel Lawrence Pechkis Jan 2011

First-Principles Calculations Of Nuclear Magnetic Resonance Chemical Shielding Tensors In Complex Ferroelectric Perovskites, Daniel Lawrence Pechkis

Dissertations, Theses, and Masters Projects

Nuclear magnetic resonance (NMR) spectroscopy is one of the most important experimental probes of local atomistic structure, chemical ordering, and dynamics. Recently, NMR has increasingly been used to study complex ferroelectric perovskite alloys, where spectra can be difficult to interpret. First-principles calculations of NMR spectra can greatly assist in this task. In this work, oxygen, titanium, and niobium NMR chemical shielding tensors, s&d4; , were calculated with first-principles methods for ferroelectric transition metal prototypical ABO3 perovskites [SrTiO3, BaTiO 3, PbTiO3 and PbZrO3] and A(B,B')O3 perovskite alloys Pb(Zr1/2Ti1/2)O3 (PZT) and Pb(Mg1/3Nb2/3)O3 (PMN). The principal findings are 1) a large anisotropy between …


The Functionalization Of Carbon Nanosheets, Ronald A. Quinlan Jan 2009

The Functionalization Of Carbon Nanosheets, Ronald A. Quinlan

Dissertations, Theses, and Masters Projects

Carbon nanosheets are a novel two-dimensional nanostructure made up of 2-20 graphene atomic planes oriented with their in-plane axis perpendicular to the growth substrate. Previous efforts in developing nanosheet technology have focused on the characterization of the system and their development as an electron source due to the high atomic enhancement factor (beta) and low turn on field. Further investigation of nanosheets as high surface area electrodes revealed poor wetting by polymeric material and extreme hydrophobic behavior.;Because nanosheet technology has promise as a high surface area electrode material, this thesis research has focused on three areas of interest: the enhancement …


Synthesis And Field Emission Properties Of Carbon Nanostructures, Kun Hou Jan 2008

Synthesis And Field Emission Properties Of Carbon Nanostructures, Kun Hou

Dissertations, Theses, and Masters Projects

This dissertation focuses on developing carbon nanostructures for application as the electron emissive material in novel back-gated triode field emission devices. The synthesis, characterization, and field emission properties of carbon nanostructures, including 1-D carbon nanofibers (CNF), 2-D carbon nanosheets (CNS), and chromium oxide coated carbon nanosheets (CrOx-CNS), are presented in this work.;First, we have fabricated aligned carbon nanofiber based back-gated triode field emission devices and confirmed the operation of these devices. 1-D carbon nanofibers were directly synthesized on blank TiW substrates using direct current plasma enhanced chemical vapor deposition. It was found that the morphology of carbon nanofibers could be …


Correction Of Finite Size Errors In Many-Body Electronic Structure Calculations, Hendra Kwee Jan 2008

Correction Of Finite Size Errors In Many-Body Electronic Structure Calculations, Hendra Kwee

Dissertations, Theses, and Masters Projects

Electronic structure calculations using simulation cells for extended systems typically incorporate periodic boundary conditions as an attempt to mimic the real system with a practically infinite number of particles. Periodic boundary conditions introduce unphysical constraints that give rise to finite-size errors. In mean-field type calculations, the infinite size limit is achieved by simple quadrature in the Brillouin zone using a finite number of k-points. Many-body electronic structure calculations with explicit two-particle interactions cannot avail themselves of this simplification. Direct extrapolation is computationally costly while size correction with less accurate methods is frequently not sufficiently accurate. The Hartree-Fock method neglects the …


First-Principles Calculations Of Electric Field Gradients In Complex Perovskites, Dandan Mao Jan 2007

First-Principles Calculations Of Electric Field Gradients In Complex Perovskites, Dandan Mao

Dissertations, Theses, and Masters Projects

Various experimental and theoretical work indicate that the local structure and chemical ordering play a crucial role in the different physical behaviors of lead-based complex ferroelectrics with the ABO 3 perovskite structure. First-principles linearized augmented plane wave (LAPW) with the local orbital extension method within local density approximation (LDA) are performed on structural models of Pb(Zr1/2Ti1/2 )O3 (PZT), Pb(Sc1/2Ta1/2)O3 (PST), Pb(Sc2/3W1/3)O3 (PSW), and Pb(Mg 1/3Nb2/3)O3 (PMN) to calculate electric field gradients (EFGs). In order to simulate these disordered alloys, various structural models were constructed with different imposed chemical orderings and symmetries. Calculations were carried out as a function of B-site …


Magneto-Optical Imaging Of Superconducting Mgb2 Thin Films, Stephanie Maria Hummert Jan 2007

Magneto-Optical Imaging Of Superconducting Mgb2 Thin Films, Stephanie Maria Hummert

Dissertations, Theses, and Masters Projects

No abstract provided.


Magnetization Dynamics And Anisotropy In Ferromagnetic/Antiferromagnetic Ni/Nio Bilayers, Andreas Petersen Jan 2007

Magnetization Dynamics And Anisotropy In Ferromagnetic/Antiferromagnetic Ni/Nio Bilayers, Andreas Petersen

Dissertations, Theses, and Masters Projects

No abstract provided.


Optical Characterization Of Ferromagnetic Heterostructure *Interfaces And Thin Films, Haibin Zhao Jan 2006

Optical Characterization Of Ferromagnetic Heterostructure *Interfaces And Thin Films, Haibin Zhao

Dissertations, Theses, and Masters Projects

This thesis presents optical characterizations of interfaces in ferromagnetic heterostructures and thin films used for spin polarized electronic devices. In these experiments, femtosecond laser spectroscopies are exploited to investigate the interface magnetization reversal, spin precession, and band offset, which are crucial in determining the performances of spintronic devices.;First, magnetization-induced second-harmonic-generation (MSHG) is applied to study interface magnetism in a hybrid structure containing a noncentrosymmetric semiconductor---Fe/AlGaAs. The reversal process of Fe interface layer magnetization is compared with the bulk magnetization reversal. In Fe/AlGaAs (001), the interface magnetization is found to be decoupled from the bulk magnetization based on the different switching …


Ultrafast Laser Spectroscopy Of Half -Metallic Chromium Dioxide, Hailong Huang Jan 2006

Ultrafast Laser Spectroscopy Of Half -Metallic Chromium Dioxide, Hailong Huang

Dissertations, Theses, and Masters Projects

This thesis presents ultrafast laser pump-probe differential transmission experiments on epitaxial CrO2 (110). The experiments were conducted at the wavelengths of 600 nm, 800 nm and 1200 nm, corresponding to the transition energies of 2 eV, 1.5 eV and 1 eV respectively. The wavelength dependent results, comparing with linear optical absorption, revealed the electronic structure of the material. The experimental results also showed polarization dependence of the probe beams. This is attributed to the electronic orbital anisotropy.;Temperature dependence was observed in the pump-probe experiments. The ultrafast transmission data show similar temperature dependence as ultrafast MOKE (Magneto-Optical Kerr Effect) data. A …


Carbon Nanosheets And Carbon Nanotubes By Rf Pecvd, Mingyao Zhu Jan 2006

Carbon Nanosheets And Carbon Nanotubes By Rf Pecvd, Mingyao Zhu

Dissertations, Theses, and Masters Projects

A planar antenna RF plasma enhanced chemical vapor deposition apparatus was built for carbon nanostructure syntheses. When operated in inductive and capacitive plasma discharging modes, two carbon nanostructures, carbon nanotube (CNT) and carbon nanosheet (CNS), were synthesized, respectively.;A nanosphere lithography method was developed and used to prepare catalyst patterns for CNT growth. Using capacitively coupled C2H2/NH 3 plasma, randomly oriented CNT were synthesized on Ni dot patterned Si substrates. Aligned CNT arrays were grown on SiO2 coated Si substrates, using both C2H2/NH3 and CH 4/H2 capacitive plasmas.;When operated in inductive coupling mode, CNS were successfully deposited on a variety of …


Internal Magnetic Field Distribution Of A Type Ii High Tc Superconductor With Non-Conducting Inclusions, Yuxin Dai Jan 2006

Internal Magnetic Field Distribution Of A Type Ii High Tc Superconductor With Non-Conducting Inclusions, Yuxin Dai

Dissertations, Theses, and Masters Projects

The internal magnetic field distributions for a type II superconductor (a single crystal YBa2Cu3O7-delta ) with large normal inclusions (YBa2Cu3O 7-delta) are studied. A model based on the London Equations has been successfully developed and applied to the interpretation of the pSR data on this system. In our model, these inclusions are assumed to be cylindrical in shape and infinite in length. Therefore, this model should be especially appropriate for the prediction of field distributions in single crystal superconductors in which columnar defects have been purposely introduced to enhance pinning.;muSR experiments on a large single-crystal sample of YBa2C u3O7-delta with …


Time-Resolved Magneto-Optical Imaging Of Superconducting Ybco Thin Films In The High-Frequency Ac Current Regime, Alexander Frey Jan 2006

Time-Resolved Magneto-Optical Imaging Of Superconducting Ybco Thin Films In The High-Frequency Ac Current Regime, Alexander Frey

Dissertations, Theses, and Masters Projects

No abstract provided.


Static And Ultrafast Moke Studies Of Exchange -Biased Cobalt Systems, Keoki A. Seu Jan 2006

Static And Ultrafast Moke Studies Of Exchange -Biased Cobalt Systems, Keoki A. Seu

Dissertations, Theses, and Masters Projects

We have studied the exchange bias interaction in metal bilayers IrMn/Co and FeMn/Co using the static and ultrafast pump-probe Kerr effects. Experiments conducted on wedged Co samples show that the exchange bias interaction is sensitive to the buffer layers grown beneath it when the antiferromagnetic layer is FeMn. The exchange bias strength, as measured by the shift in the magnetic hysteresis loop, follows a 1/tFM dependence as reported in the literature. The time-domain pump-probe experiments reveal coherent magnetization oscillations, whose frequencies are comparable to those measured by frequency-domain FMR measurements, and they fit well to FMR equations for the frequency. …