Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Tennessee, Knoxville

Engineering

Articles 1 - 30 of 250

Full-Text Articles in Physical Sciences and Mathematics

Static And Dynamic State Estimation Applications In Power Systems Protection And Control Engineering, Ibukunoluwa Olayemi Korede Dec 2023

Static And Dynamic State Estimation Applications In Power Systems Protection And Control Engineering, Ibukunoluwa Olayemi Korede

Doctoral Dissertations

The developed methodologies are proposed to serve as support for control centers and fault analysis engineers. These approaches provide a dependable and effective means of pinpointing and resolving faults, which ultimately enhances power grid reliability. The algorithm uses the Least Absolute Value (LAV) method to estimate the augmented states of the PCB, enabling supervisory monitoring of the system. In addition, the application of statistical analysis based on projection statistics of the system Jacobian as a virtual sensor to detect faults on transmission lines. This approach is particularly valuable for detecting anomalies in transmission line data, such as bad data or …


Atomic-Level Mechanisms Of Fast Relaxation In Metallic Glasses, Leo W. Zella Dec 2023

Atomic-Level Mechanisms Of Fast Relaxation In Metallic Glasses, Leo W. Zella

Doctoral Dissertations

Glasses are ubiquitous in daily life and have unique properties which are a consequence of the underlying disordered structure. By understanding the fundamental processes that govern these properties, we can modify glasses for desired applications. Key to understanding the structure-dynamics relationship in glasses is the variety of relaxation processes that exist below the glass transition temperature. Though these relaxations are well characterized with macroscopic experimental techniques, the microscopic nature of these relaxations is difficult to elucidate with experimental tools due to the requirements of timescale and spatial resolution. There remain many questions regarding the microscopic nature of relaxation in glass …


Exploring Soil Microbial Dynamics In Southern Appalachian Forests: A Systems Biology Approach To Prescribed Fire Impacts, Saad Abd Ar Rafie Dec 2023

Exploring Soil Microbial Dynamics In Southern Appalachian Forests: A Systems Biology Approach To Prescribed Fire Impacts, Saad Abd Ar Rafie

Doctoral Dissertations

Prescribed fires in Southern Appalachian forests are vital in ecosystem management and wildfire risk mitigation. However, understanding the intricate dynamics between these fires, soil microbial communities, and overall ecosystem health remains challenging. This dissertation addresses this knowledge gap by exploring selected aspects of this complex relationship across three interconnected chapters.

The first chapter investigates the immediate effects of prescribed fires on soil microbial communities. It reveals subtle shifts in porewater chemistry and significant increases in microbial species richness. These findings offer valuable insights into the interplay between soil properties and microbial responses during the early stages following a prescribed fire. …


Exact Models, Heuristics, And Supervised Learning Approaches For Vehicle Routing Problems, Zefeng Lyu Dec 2023

Exact Models, Heuristics, And Supervised Learning Approaches For Vehicle Routing Problems, Zefeng Lyu

Doctoral Dissertations

This dissertation presents contributions to the field of vehicle routing problems by utilizing exact methods, heuristic approaches, and the integration of machine learning with traditional algorithms. The research is organized into three main chapters, each dedicated to a specific routing problem and a unique methodology. The first chapter addresses the Pickup and Delivery Problem with Transshipments and Time Windows, a variant that permits product transfers between vehicles to enhance logistics flexibility and reduce costs. To solve this problem, we propose an efficient mixed-integer linear programming model that has been shown to outperform existing ones. The second chapter discusses a practical …


The Synthesis And Optimization Of Sulfide And Halide Solid Electrolytes For All Solid-State Batteries, Teerth Brahmbhatt Aug 2023

The Synthesis And Optimization Of Sulfide And Halide Solid Electrolytes For All Solid-State Batteries, Teerth Brahmbhatt

Doctoral Dissertations

Countries and organizations around the world have established ambitious targets to transition away from fossil fuel-based energy sources and devices. The transition is focused on cleaning up power generation by converting coal, natural gas, and oil-based power generation to renewables and nuclear energy. Decarbonizing other sectors of energy use, transportation for example, will require broader electrification. To drive this move away from fossil fuel powered transportation will require portable energy storage devices. Conventional lithium-ion batteries are a popular candidate to lead this shift. However, these batteries often rely on flammable liquid electrolytes and carbon anodes that suffer from low energy …


Heat Pump Integrated Thermal Storage For Building Demand Response And Decarbonization, Sara Sultan Aug 2023

Heat Pump Integrated Thermal Storage For Building Demand Response And Decarbonization, Sara Sultan

Doctoral Dissertations

This work presents a novel thermal energy storage (TES) integrated with existing residential heat pump (HP). The research focuses on controls and configuration for energy, demand, cost and carbon emissions savings for residential buildings’ energy consumption. This work will be significant in developing a framework especially for reduced energy demand and carbon emissions associated with space heating and cooling in residential buildings. Since buildings account for about 40% primary energy consumption in U.S. and half of that is associated with HP.

An existing air source HP in integrated with a phase change material (PCM) based TES via active configuration where …


Space-Angle Discontinuous Galerkin Finite Element Method For Radiative Transfer Equation, Hang Wang May 2023

Space-Angle Discontinuous Galerkin Finite Element Method For Radiative Transfer Equation, Hang Wang

Doctoral Dissertations

Radiative transfer theory describes the interaction of radiation with scattering and absorbing media. It has applications in neutron transport, atmospheric physics, heat transfer, molecular imaging, and others. In steady state, the radiative transfer equation is an integro-differential equation of five independent variables, which are 3 dimensions in space and 2 dimensions in the angular direction. This high dimensionality and the presence of the integral term present serious challenges when solving the equation numerically. Over the past 50 years, several techniques for solving the radiative transfer equation (RTE) have been introduced. These include, but are certainly not limited to, Monte Carlo …


Fabrication, Measurements, And Modeling Of Semiconductor Radiation Detectors For Imaging And Detector Response Functions, Corey David Ahl May 2023

Fabrication, Measurements, And Modeling Of Semiconductor Radiation Detectors For Imaging And Detector Response Functions, Corey David Ahl

Doctoral Dissertations

In the first part of this dissertation, we cover the development of a diamond semiconductor alpha-tagging sensor for associated particle imaging to solve challenges with currently employed scintillators. The alpha-tagging sensor is a double-sided strip detector made from polycrystalline CVD diamond. The performance goals of the alpha-tagging sensor are 700-picosecond timing resolution and 0.5 mm spatial resolution. A literature review summarizes the methodology, goals, and challenges in associated particle imaging. The history and current state of alpha-tagging sensors, followed by the properties of diamond semiconductors are discussed to close the literature review. The materials and methods used to calibrate the …


Total Absorption Spectroscopy Of Mo-106 And Tc-106, Michael Cooper May 2023

Total Absorption Spectroscopy Of Mo-106 And Tc-106, Michael Cooper

Doctoral Dissertations

Total absorption spectroscopy is a method of gamma-ray spectroscopy that has gained prominence in the past several decades, as nuclear data revisions are performed on older nuclear data, which is often incomplete. A strong understanding of underlying nuclear data, particularly fission and beta decay data, is essential for nuclear reactors and nuclear fuel decay heat. This PhD work involves the analysis of fission fragments 106Mo [Mo-106] and 106Tc [Tc-106]. These neutron rich isotopes contribute upwards of 6% of the cumulative fission yield of 241Pu [Pu-241] fission, and 4% of 239Pu [Pu-239] fission. Prior data for these two fission fragments only …


A Machine Learning Approach For Predicting Clinical Trial Patient Enrollment In Drug Development Portfolio Demand Planning, Ahmed Shoieb May 2023

A Machine Learning Approach For Predicting Clinical Trial Patient Enrollment In Drug Development Portfolio Demand Planning, Ahmed Shoieb

Masters Theses

One of the biggest challenges the clinical research industry currently faces is the accurate forecasting of patient enrollment (namely if and when a clinical trial will achieve full enrollment), as the stochastic behavior of enrollment can significantly contribute to delays in the development of new drugs, increases in duration and costs of clinical trials, and the over- or under- estimation of clinical supply. This study proposes a Machine Learning model using a Fully Convolutional Network (FCN) that is trained on a dataset of 100,000 patient enrollment data points including patient age, patient gender, patient disease, investigational product, study phase, blinded …


Understanding And Simulating Wildfire Changes Using Advanced Statical And Process-Oriented Models, Rongyun Tang May 2023

Understanding And Simulating Wildfire Changes Using Advanced Statical And Process-Oriented Models, Rongyun Tang

Doctoral Dissertations

This study aims to investigate the spatiotemporal dynamic of global wildfires, their underlying climate-driving mechanisms, and their predictability by utilizing multiple data sources (both process-based model simulations and satellite-based observations) and multiple analytical methods including machine learning techniques (MLTs).

We first explored the global wildfire interannual variability (IAV) and its climate sensitivity across nine biomes from 1997 to 2018, leveraging the state-of-art U.S. Department of Energy’s Energy Exascale Earth System Model (E3SM) land component (ELM-v1) simulations with six sets of climate forcings. Results indicate that 1) ELM simulations could reproduce the IAV of wildfire in terms of magnitudes, distribution, bio-regional …


Towards Reduced-Order Model Accelerated Optimization For Aerodynamic Design, Andrew L. Kaminsky Dec 2022

Towards Reduced-Order Model Accelerated Optimization For Aerodynamic Design, Andrew L. Kaminsky

Doctoral Dissertations

The adoption of mathematically formal simulation-based optimization approaches within aerodynamic design depends upon a delicate balance of affordability and accessibility. Techniques are needed to accelerate the simulation-based optimization process, but they must remain approachable enough for the implementation time to not eliminate the cost savings or act as a barrier to adoption.

This dissertation introduces a reduced-order model technique for accelerating fixed-point iterative solvers (e.g. such as those employed to solve primal equations, sensitivity equations, design equations, and their combination). The reduced-order model-based acceleration technique collects snapshots of early iteration (pre-convergent) solutions and residuals and then uses them to project …


Functional Bottlebrush Polymer Additives For Thin Films And Coatings, Travis S. Laws Aug 2022

Functional Bottlebrush Polymer Additives For Thin Films And Coatings, Travis S. Laws

Doctoral Dissertations

Bottlebrush polymers are a class of highly branched polymers consisting of polymeric side chains that are densely grafted to a linear backbone. Their highly branched architecture results in surface enrichment across a broad range of materials. The goal of my research has been centered around the design of functional bottlebrush polymers and their use as surface active additives in blend films and coatings.

In the first chapter, we examine the segregation behavior of polystyrene bottlebrushes that are blended with linear polystyrene. We systematically vary the lengths of the bottlebrush backbone (Nb), side-chain (Nsc), and the linear matrix (Nm) in order …


How Dynamic Bond Results In The Unique Viscoelastic Behavior Of The Associating Polymers, Sirui Ge Aug 2022

How Dynamic Bond Results In The Unique Viscoelastic Behavior Of The Associating Polymers, Sirui Ge

Doctoral Dissertations

Associating polymer is a special kind of polymer possessing transient reversible bonds in addition to the conventional covalent bonds. The reversible bonds provide unique dynamics and fascinating viscoelastic properties, resulting in attractive applications for these polymers, such as self-healing and shape memory materials. Despite many years of studies, the understanding of dynamics of polymers with reversible bonds, especially on molecular level, is still in the rudimentary stage, preventing the rational design of the potential novel functional materials based on associating polymers. In this dissertation, we provide a detailed and quantitative understanding of the dynamics and viscoelastic properties of associating polymers. …


Direct Calculation Of Configurational Entropy: Pair Correlation Functions And Disorder, Clifton C. Sluss Aug 2022

Direct Calculation Of Configurational Entropy: Pair Correlation Functions And Disorder, Clifton C. Sluss

Doctoral Dissertations

Techniques such as classical molecular dynamics [MD] simulation provide ready access to the thermodynamic data of model material systems. However, the calculation of the Helmholtz and Gibbs free energies remains a difficult task due to the tedious nature of extracting accurate values of the excess entropy from MD simulation data. Thermodynamic integration, a common technique for the calculation of entropy requires numerous simulations across a range of temperatures. Alternative approaches to the direct calculation of entropy based on functionals of pair correlation functions [PCF] have been developed over the years. This work builds upon the functional approach tradition by extending …


Polynorbornenes For Advanced Applications And Processes, Xinyi Wang Aug 2022

Polynorbornenes For Advanced Applications And Processes, Xinyi Wang

Doctoral Dissertations

Polynorbornenes have dramatically different properties and various applications depending on their chemical structures. The modular nature of norbornene-based systems provides a facile route toward synthesizing diverse polymeric materials, thus making them ideal materials for systematic structure-property investigations. Herein, their application as gas separation membranes and the correlation between their gas-transport properties and polymer structures will be investigated. Though many valuable correlations between gas-permeability and polynorbornene structure have been studied previously, many of these efforts have focused heavily on designing materials with various chemical structures to achieve high permeabilities. In contrast, the influence of molecular structure on: a) polynorbornene chain packing …


Analysis Of Turbulent Flow Behavior In Helicopter Rotor Hub Wakes, Forrest Mobley Aug 2022

Analysis Of Turbulent Flow Behavior In Helicopter Rotor Hub Wakes, Forrest Mobley

Masters Theses

The rotor hub is one of the most important features of all helicopters, as it provides the pilot a means for controlling the vehicle by changing the characteristics of the main and tail rotors. The hub also provides a structural foundation for the rotors and allows for the rotor blades to respond to aerodynamic forces while maintaining controllability and stability. Due to the inherent geometry and high rate of rotation, the rotor hub in its current form acts a large bluff body and is the primary source of parasite drag on the helicopter, despite its relatively small size. The rotor …


Tokamak 3d Heat Load Investigations Using An Integrated Simulation Framework, Thomas Looby May 2022

Tokamak 3d Heat Load Investigations Using An Integrated Simulation Framework, Thomas Looby

Doctoral Dissertations

Reactor class nuclear fusion tokamaks will be inherently complex. Thousands of interconnected systems that span orders of magnitude in physical scale must operate cohesively for the machine to function. Because these reactor class tokamaks are all in an early design stage, it is difficult to quantify exactly how each subsystem will act within the context of the greater systems. Therefore, to predict the engineering parameters necessary to design the machine, simulation frameworks that can model individual systems as well as the interfaced systems are necessary. This dissertation outlines a novel framework developed to couple otherwise disparate computational domains together into …


Model Based Force Estimation And Stiffness Control For Continuum Robots, Vincent A. Aloi May 2022

Model Based Force Estimation And Stiffness Control For Continuum Robots, Vincent A. Aloi

Doctoral Dissertations

Continuum Robots are bio-inspired structures that mimic the motion of snakes, elephant trunks, octopus tentacles, etc. With good design, these robots can be naturally compliant and miniaturizable, which makes Continuum Robots ideal for traversing narrow complex environments. Their flexible design, however, prevents us from using traditional methods for controlling and estimating loading on rigid link robots.

In the first thrust of this research, we provided a novel stiffness control law that alters the behavior of an end effector during contact. This controller is applicable to any continuum robot where a method for sensing or estimating tip forces and pose exists. …


Design And Development Of The Urban Population Health Observatory To Improve Disease Surveillance And Response, Whitney Brakefield May 2022

Design And Development Of The Urban Population Health Observatory To Improve Disease Surveillance And Response, Whitney Brakefield

Doctoral Dissertations

Chronic and infectious diseases have a profound impact on the quality and length of life of populations that suffer from these conditions. Scientists, physicians, and health officials are seeking innovative approaches to decrease the morbidity and mortality of deadly diseases. Incorporating artificial intelligence and data science techniques across the health science domain could improve disease surveillance, intervention planning, and policymaking. In this dissertation, we describe the design and development of the Urban Population Health Observatory (UPHO), an explainable knowledge-based multimodal big data analytics platform. A common challenge for conducting multimodal big data analytics is integrating multidimensional heterogeneous data sources, which …


Chiral Mesogen-Free Liquid Crystalline Polyethers With Sulfonylated Side Chains And Patchy Brush Nanoparticles, Caleb A. Bohannon May 2022

Chiral Mesogen-Free Liquid Crystalline Polyethers With Sulfonylated Side Chains And Patchy Brush Nanoparticles, Caleb A. Bohannon

Doctoral Dissertations

Ferroelectric liquid crystalline polymers (LCPs) hold promise for various applications driven by low electric fields, e.g., electrocaloric materials, because of the higher molecular motion in the liquid crystalline (LC) state. However, traditional chiral smectic C (SmC*) LCPs exhibit small spontaneous polarizations due to the bulky aromatic mesogens and weak polar groups. This dissertation research is focused on the design of mesogen-free sulfonylated LCPs with a goal of seeking the ferroelectric SmC* phase. Such LCPs are expected to exhibit high polarizations owing to the sulfonyl’s large dipole moment. A series of poly(oxypropylene)s (POPs), with chirality being introduced into either the backbone …


A High Rate Pixelated Neutron Detector For Neutron Reflectometry At The Spallation Neutron Source, Su-Ann Chong May 2022

A High Rate Pixelated Neutron Detector For Neutron Reflectometry At The Spallation Neutron Source, Su-Ann Chong

Doctoral Dissertations

This work presents the development of a high-rate 6Li-based pixelated neutron detector for neutron reflectometry instruments at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory. The current detector technology falls short on the instrument requirements, particularly on the counting rate capability. This detector was designed specifically to overcome the limitation in counting rate by having a fully pixelated design from neutron conversion layer to photodetector and readout system. For the neutron converting layer, a 6Li-based neutron scintillator was used. Each scintillator element was coupled to a photodetector, in this case, a silicon photomultiplier (SiPM). The output of each SiPM …


Path Planning And Flight Control Of Drones For Autonomous Pollination, Chapel R. Rice May 2022

Path Planning And Flight Control Of Drones For Autonomous Pollination, Chapel R. Rice

Masters Theses

The decline of natural pollinators necessitates the development of novel pollination technologies. In this thesis, a drone-enabled autonomous pollination system (APS) that consists of five primary modules: environment sensing, flower perception, path planning, flight control, and pollination mechanisms is proposed. These modules are highly dependent upon each other, with each module relying on inputs from the other modules. This thesis focuses on approaches to the path planning and flight control modules. Flower perception is briefly demonstrated developing a map of flowers using results from previous work. With that map of flowers, APS path planning is defined as a variant of …


Meta-Heuristic Optimization Techniques For The Production Of Medical Isotopes Through Special Target Design, Cameron Ian Salyer May 2022

Meta-Heuristic Optimization Techniques For The Production Of Medical Isotopes Through Special Target Design, Cameron Ian Salyer

Masters Theses

Medical isotopes are used for a variety of different diagnostic and therapeutic purposes Ruth (2008). Due to recent newly discovered applications, their production has become rapidly more scarce than ever before Charlton (2019). Therefore, more efficient and less time consuming methods are of interest for not only the industry’s demand, but for the individuals who require radio-isotope procedures. Currently, the primary source of most medical isotopes used today are provided by reactor and cyclotron irradiation techniques, followed by supplemental radio-chemical separations Ruth (2008). Up until this point, target designs have been optimized by experience, back of the envelope calculations, and …


The Bracelet: An American Sign Language (Asl) Interpreting Wearable Device, Samuel Aba, Ahmadre Darrisaw, Pei Lin, Thomas Leonard May 2022

The Bracelet: An American Sign Language (Asl) Interpreting Wearable Device, Samuel Aba, Ahmadre Darrisaw, Pei Lin, Thomas Leonard

Chancellor’s Honors Program Projects

No abstract provided.


Enigma - Ongoing Development Towards Novel Beta-Decay Spectroscopy Station At Isolde, Philipp Wagenknecht May 2022

Enigma - Ongoing Development Towards Novel Beta-Decay Spectroscopy Station At Isolde, Philipp Wagenknecht

Masters Theses

Beta decay and collinear laser spectroscopy are proven efficient tools to study nuclear structure far from stability. Two areas of significance are investigations into nuclear deformation and shape coexistence, as well as delayed neutron emissions used in nuclear energy applications. This contribution presents the ongoing development towards a novel beta-decay spectroscopy station for the VITO experiment at CERN’s radioactive ion beam facility ISOLDE. The setup will utilize both collinear laser spectroscopy and beta-decay spectroscopy to measure the energy and spin-parities of the ground and excited states of radioactive beams. Initial designs of the support structure, magnetic field, and detector array …


Unconventional Computation Including Quantum Computation, Bruce J. Maclennan Apr 2022

Unconventional Computation Including Quantum Computation, Bruce J. Maclennan

Faculty Publications and Other Works -- EECS

Unconventional computation (or non-standard computation) refers to the use of non-traditional technologies and computing paradigms. As we approach the limits of Moore’s Law, progress in computation will depend on going beyond binary electronics and on exploring new paradigms and technologies for information processing and control. This book surveys some topics relevant to unconventional computation, including the definition of unconventional computations, the physics of computation, quantum computation, DNA and molecular computation, and analog computation. This book is the content of a course taught at UTK.


Design Of An Accelerator-Based Shielding Experiment At The Nasa Space Radiation Laboratory Relevant To Enclosed, Shielded Environments In Space, Lawrence H Heilbronn, Michael Sivertz, Adam Rusek, Charlie Pearson, Martha Clowdsley, Luis Castellanos, Natalie Mcgirl, Ashwin Srikrishna, Cary Zeitlin Jan 2022

Design Of An Accelerator-Based Shielding Experiment At The Nasa Space Radiation Laboratory Relevant To Enclosed, Shielded Environments In Space, Lawrence H Heilbronn, Michael Sivertz, Adam Rusek, Charlie Pearson, Martha Clowdsley, Luis Castellanos, Natalie Mcgirl, Ashwin Srikrishna, Cary Zeitlin

Faculty Publications and Other Works -- Nuclear Engineering

Recent calculations indicate that the dose equivalent in an enclosed, shielded environment in a galactic cosmic ray field will increase or remain unchanged when shielding thickness increases beyond 20 to 30 g/cm2. This trend is seen out to 100 g/cm2, beyond which calculations were not run since depths greater than this are not envisioned for human missions in deep space. If these calculations are accurate, then an optimal shielding thickness (or narrow range of thicknesses) exists, with important implications for spacecraft and habitat design. Crucially, the calculation reveals a minimum dose equivalent value that cannot be reduced with added shielding, …


There From The Beginning: The Women Of Los Alamos National Laboratory Supporting National And International Nuclear Security, Olga Martin, Laura Mcclellan, Octavio Ramos, Heather Quinn Jan 2022

There From The Beginning: The Women Of Los Alamos National Laboratory Supporting National And International Nuclear Security, Olga Martin, Laura Mcclellan, Octavio Ramos, Heather Quinn

International Journal of Nuclear Security

From the beginning of the Manhattan Project in the early 1940s, the women of what would become Los Alamos National Laboratory (LANL) worked in technical positions alongside their male counterparts, played a key role as computers, and worked in administrative jobs as secretaries, phone operators, bookkeepers, and on behalf of the U.S. Army in the Women’s Army Corps.

Throughout the history of the Laboratory, women experts at LANL helped establish and lead important national and international security programs, with careers in science, technology, engineering, and mathematics. Over time, the women of Los Alamos have come together under various Employee Resource …


Impurity Production And Transport In The Prototype Material Plasma Exposure Experiment, Clyde J. Beers Dec 2021

Impurity Production And Transport In The Prototype Material Plasma Exposure Experiment, Clyde J. Beers

Doctoral Dissertations

The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear pulse plasma device at Oak Ridge National Laboratory with the purpose of doing the research and development for the heating concepts on the planned full MPEX device. The goal of MPEX is to perform material studies at fusion relevant conditions. To understand the conditions at the material target for performing plasma-material interaction studies the ion temperature and density, the electron temperature and density, and the particle flux and fluence must be known. Impurities within Proto-MPEX can alter the desired conditions at the material target and need to be understood for …