Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Syracuse University

Soft condensed matter

Articles 1 - 24 of 24

Full-Text Articles in Physical Sciences and Mathematics

Generic Phases Of Cross-Linked Active Gels: Relaxation, Oscillation And Contractility, Shiladitya Banerjee, Tanniemola B. Liverpool, M. C. Marchetti Oct 2011

Generic Phases Of Cross-Linked Active Gels: Relaxation, Oscillation And Contractility, Shiladitya Banerjee, Tanniemola B. Liverpool, M. C. Marchetti

Physics - All Scholarship

We study analytically and numerically a generic continuum model of an isotropic active solid with internal stresses generated by non-equilibrium `active' mechano-chemical reactions. Our analysis shows that the gel can be tuned through three classes of dynamical states by increasing motor activity: a constant unstrained state of homogeneous density, a state where the local density exhibits sustained oscillations, and a steady-state which is spontaneously contracted, with a uniform mean density.


Substrate Rigidity Deforms And Polarizes Active Gels, Shiladitya Banerjee, M. C. Marchetti Aug 2011

Substrate Rigidity Deforms And Polarizes Active Gels, Shiladitya Banerjee, M. C. Marchetti

Physics - All Scholarship

We present a continuum model of the coupling between cells and substrate that accounts for some of the observed substrate-stiffness dependence of cell properties. The cell is modeled as an elastic active gel, adapting recently developed continuum theories of active viscoelastic fluids. The coupling to the substrate enters as a boundary condition that relates the cell's deformation field to local stress gradients. In the presence of activity, the coupling to the substrate yields spatially inhomogeneous contractile stresses and deformations in the cell and can enhance polarization, breaking the cell's front-rear symmetry.


Active Jamming: Self-Propelled Soft Particles At High Density, Silke Henkes, Yaouen Fily, M. Christina Marchetti Jul 2011

Active Jamming: Self-Propelled Soft Particles At High Density, Silke Henkes, Yaouen Fily, M. Christina Marchetti

Physics - All Scholarship

We study numerically the phases and dynamics of a dense collection of self-propelled particles with soft repulsive interactions in two dimensions. The model is motivated by recent in vitro experiments on confluent monolayers of migratory epithelial and endothelial cells. The phase diagram exhibits a liquid phase with giant number fluctuations at low packing fraction and high self-propulsion speed and a jammed phase at high packing fraction and low self-propulsion speed. The dynamics of the jammed phase is controlled by the low frequency modes of the jammed packing.


Cooperative Self-Propulsion Of Active And Passive Rotors, Yaouen Fily, Aparna Baskaran, M. Cristina Marchetti Jul 2011

Cooperative Self-Propulsion Of Active And Passive Rotors, Yaouen Fily, Aparna Baskaran, M. Cristina Marchetti

Physics - All Scholarship

Using minimal models for low Reynolds number passive and active rotors in a fluid, we characterize the hydrodynamic interactions among rotors and the resulting dynamics of a pair of interacting rotors. This allows us to treat in a common framework passive or externally driven rotors, such as magnetic colloids driven by a rotating magnetic field, and active or internally driven rotors, such as sperm cells confined at boundaries. The hydrodynamic interaction of passive rotors contains an azimuthal component 1/r2 to dipolar order that can yield the recently discovered “cooperative self-propulsion” of a pair of rotors of opposite vorticity. While this …


Polar Patterns In Active Fluids, Luca Giomi, M. Cristina Marchetti Jun 2011

Polar Patterns In Active Fluids, Luca Giomi, M. Cristina Marchetti

Physics - All Scholarship

We study the spatio-temporal dynamics of a model of polar active fluid in two dimensions. The system exhibits a transition from an isotropic to a polarized state as a function of density. The uniform polarized state is, however, unstable above a critical value of activity. Upon increasing activity, the active fluids displays increasingly complex patterns, including traveling bands, traveling vortices and chaotic behavior. The advection arising from the particles self-propulsion and unique to polar fluids yields qualitatively new behavior as compared to that obtain in active nematic, yielding traveling-wave structures. We show that the nonlinear hydrodynamic equations can be mapped …


Instabilities And Oscillations In Isotropic Active Gels, Shiladitya Banerjee, M. Cristina Marchetti Oct 2010

Instabilities And Oscillations In Isotropic Active Gels, Shiladitya Banerjee, M. Cristina Marchetti

Physics - All Scholarship

We present a generic formulation of the continuum elasticity of an isotropic crosslinked active gel. The gel is described by a two-component model consisting of an elastic network coupled frictionally to a permeating fluid. Activity is induced by active crosslinkers that undergo an ATP-activated cycle and transmit forces to the network. The on/off dynamics of the active crosslinkers is described via rate equations for unbound and bound motors. For large activity motors yield a contractile instability of the network. At smaller values of activity, the on/off motor dynamics provides an effective inertial drag on the network that opposes elastic restoring …


Mechanical Response Of Active Gels, Tanniemola B. Liverpool, M. Cristina Marchetti, J-F. Joanny, J. Prost Jul 2008

Mechanical Response Of Active Gels, Tanniemola B. Liverpool, M. Cristina Marchetti, J-F. Joanny, J. Prost

Physics - All Scholarship

We study a model of an active gel of cross-linked semiflexible filaments with additional active linkers such as myosin II clusters. We show that the coupling of the elasticity of the semiflexible filaments to the mechanical properties of the motors leads to contractile behavior of the gel, in qualitative agreement with experimental observations. The motors, however, soften the zero frequency elastic constant of the gel. When the collective motor dynamics is incorporated in the model, a stiffening of the network at high frequencies is obtained. The frequency controlling the crossover between low and high frequency network elasticity is estimated in …


Enhanced Diffusion And Ordering Of Self-Propelled Rods, Aparna Baskaran, M. Cristina Marchetti Jun 2008

Enhanced Diffusion And Ordering Of Self-Propelled Rods, Aparna Baskaran, M. Cristina Marchetti

Physics - All Scholarship

Starting from a minimal physical model of self propelled hard rods on a substrate in two dimensions, we derive a modified Smoluchowski equation for the system. Self -propulsion enhances longitudinal diffusion and modifies the mean field excluded volume interaction. From the Smoluchowski equation we obtain hydrodynamic equations for rod concentration, polarization and nematic order parameter. New results at large scales are a lowering of the density of the isotropic-nematic transition and a strong enhancement of boundary effects in confined self-propelled systems.


Complex Spontaneous Flows And Concentration Banding In Active Polar Films, Luca Giomi, M. Cristina Marchetti, Tanniemola B. Liverpool May 2008

Complex Spontaneous Flows And Concentration Banding In Active Polar Films, Luca Giomi, M. Cristina Marchetti, Tanniemola B. Liverpool

Physics - All Scholarship

We study the dynamical properties of active polar liquid crystalline films. Like active nematic films, active polar films undergo a dynamical transitions to spontaneously flowing steady-states. Spontaneous flow in polar fluids is, however, always accompanied by strong concentration inhomogeneities or "banding" not seen in nematics. In addition, a spectacular property unique to polar active films is their ability to generate spontaneously oscillating and banded flows even at low activity. The oscillatory flows become increasingly complicated for strong polarity.


Plasticity In Current-Driven Vortex Lattices, Panayotis Benetatos, M. Cristina Marchetti Feb 2008

Plasticity In Current-Driven Vortex Lattices, Panayotis Benetatos, M. Cristina Marchetti

Physics - All Scholarship

We present a theoretical analysis of recent experiments on current-driven vortex dynamics in the Corbino disk geometry. This geometry introduces controlled spatial gradients in the driving force and allows the study of the onset of plasticity and tearing in clean vortex lattices. We describe plastic slip in terms of the stress-driven unbinding of dislocation pairs, which in turn contribute to the relaxation of the shear, yielding a nonlinear response. The steady state density of free dislocations induced by the applied stress is calculated as a function of the applied current and temperature. A criterion for the onset of plasticity at …


Poisson-Bracket Approach To The Dynamics Of Bent-Core Molecules, William Kung, M. Cristina Marchetti Feb 2008

Poisson-Bracket Approach To The Dynamics Of Bent-Core Molecules, William Kung, M. Cristina Marchetti

Physics - All Scholarship

We generalize our previous work on the phase stability and hydrodynamic of polar liquid crystals possessing local uniaxial

C1v-symmetry to biaxial systems exhibiting local C2v -symmetry. Our work is motivated by the recently discovered examples of thermotropic biaxial nematic liquid crystals comprising bent-core mesogens, whose molecular structure is characterized by a non-polar body axis (n) as well as a polar axis (p) along the bisector of the bent mesogenic core which is coincident with a large, transverse dipole moment. The free energy for this system differs from that of biaxial nematic liquid crystals in that it contains terms violating the …


Depinning And Plasticity Of Driven Disordered Lattices, M. Cristina Marchetti Feb 2008

Depinning And Plasticity Of Driven Disordered Lattices, M. Cristina Marchetti

Physics - All Scholarship

We review in these notes the dynamics of extended condensed matter systesm, such as vortex lattices in type-II superconductors and charge density waves in anisotropic metals, driven over quenched disorder. We focus in particular on the case of strong disorder, where topological defects are generated in the driven lattice. In this case the repsonse is plastic and the depinning transition may become discontinuous and hysteretic.


Nematic And Polar Order In Active Filament Solutions, A. Ahmadi, Tanniemola B. Liverpool, M. Cristina Marchetti Feb 2008

Nematic And Polar Order In Active Filament Solutions, A. Ahmadi, Tanniemola B. Liverpool, M. Cristina Marchetti

Physics - All Scholarship

Using a microscopic model of interacting polar biofilaments and motor proteins, we characterize the phase diagram of both homogeneous and inhomogeneous states in terms of experimental parameters. The polarity of motor clusters is key in determining the organization of the filaments in homogeneous isotropic, polarized and nematic states, while motor-induced bundling yields spatially inhomogeneous structures.


Hydrodynamics Of Polar Liquid Crystals, William Kung, M. Cristina Marchetti, Karl Saunders Feb 2008

Hydrodynamics Of Polar Liquid Crystals, William Kung, M. Cristina Marchetti, Karl Saunders

Physics - All Scholarship

Starting from a microscopic definition of an alignment vector proportional to the polarization, we discuss the hydrodynamics of polar liquid crystals with local

C1v-symmetry. The free energy for polar liquid crystals differs from that of nematic liquid crystals (D1h) in that it contains terms violating the n −n symmetry. First we show that these Z2-odd terms induce a general splay instability of a uniform polarized state in a range of parameters. Next we use the general Poissonbracket formalism to derive the hydrodynamic equations of the system in the polarized state. The structure of the linear hydrodynamic modes confirms the existence …


Hydrodynamics Of Self-Propelled Hard Rods, Aparna Baskaran, M. Cristina Marchetti Feb 2008

Hydrodynamics Of Self-Propelled Hard Rods, Aparna Baskaran, M. Cristina Marchetti

Physics - All Scholarship

Motivated by recent simulations and by experiments on aggregation of gliding bacteria, we study a model of the collective dynamics of self-propelled hard rods on a substrate in two dimensions. The rods have finite size, interact via excluded volume and their dynamics is overdamped by the interaction with the substrate. Starting from a microscopic model with non-thermal noise sources, a continuum description of the system is derived. The hydrodynamic equations are then used to characterize the possible steady states of the systems and their stability as a function of the particles packing fraction and the speed of self propulsion.


Patterned Geometries And Hydrodynamics At The Vortex Bose Glass Transition, M. Cristina Marchetti, David R. Nelson Feb 2008

Patterned Geometries And Hydrodynamics At The Vortex Bose Glass Transition, M. Cristina Marchetti, David R. Nelson

Physics - All Scholarship

Patterned irradiation of cuprate superconductors with columnar defects allows a new generation of experiments which can probe the properties of vortex liquids by confining them to controlled geometries. Here we show that an analysis of such experiments that combines an inhomogeneous Bose glass scaling theory with the hydrodynamic description of viscous flow of vortex liquids can be used to infer the critical behavior near the Bose glass transition. The shear viscosity is predicted to diverge as

|T − TBG|−z at the Bose glass transition, with z ≃

6 the dynamical critical exponent.


Viscoelasticity From A Microscopic Model Of Dislocation Dynamics, M. Cristina Marchetti, Karl Saunders Feb 2008

Viscoelasticity From A Microscopic Model Of Dislocation Dynamics, M. Cristina Marchetti, Karl Saunders

Physics - All Scholarship

It is shown that the dynamics of a two-dimensional crystal with a finite concentration of dislocations, as well as vacancy and interstitial defects, is governed by the hydrodynamic equations of a viscoelastic medium. At the longest length scales the viscoelasticity is described by the simplest Maxwell model, whose shear and compressional relaxation times are obtained in terms of microscopic quantities, including the density of free dislocations. At short length scales, bond orientational order effects become important and lead to wavevector dependent corrections to the relaxation times.


Interstitials, Vacancies And Dislocations In Flux-Line Lattices: A Theory Of Vortex Crystals, Supersolids And Liquids, M. Cristina Marchetti, Leo Radzihovsky Feb 2008

Interstitials, Vacancies And Dislocations In Flux-Line Lattices: A Theory Of Vortex Crystals, Supersolids And Liquids, M. Cristina Marchetti, Leo Radzihovsky

Physics - All Scholarship

We study a three dimensional Abrikosov vortex lattice in the presence of an equilibrium concentration of vacancy, interstitial and dislocation loops. Vacancies and interstitials renormalize the long-wavelength bulk and tilt elastic moduli. Dislocation loops lead to the vanishing of the long-wavelength shear modulus. The coupling to vacancies and interstitials - which are always present in the liquid state - allows dislocations to relax stresses by climbing out of their glide plane. Surprisingly, this mechanism does not yield any further independent renormalization of the tilt and compressional moduli at long wavelengths. The long wavelength properties of the resulting state are formally …


Organization And Instabilities Of Entangled Active Polar Filaments, Tanniemola B. Liverpool, M. Cristina Marchetti Feb 2008

Organization And Instabilities Of Entangled Active Polar Filaments, Tanniemola B. Liverpool, M. Cristina Marchetti

Physics - All Scholarship

We study the dynamics of an entangled, isotropic solution of polar filaments coupled by molecular motors which generate relative motion of the filaments in two and three dimensions. We investigate the stability of the homogeneous state for constant motor concentration taking into account excluded volume and entanglement. At low filament density the system develops a density instability, while at high filament density entanglement effects drive the instability of orientational fluctuations.


Rheology Of Active Filament Solutions, Tanniemola B. Liverpool, M. Cristina Marchetti Jan 2008

Rheology Of Active Filament Solutions, Tanniemola B. Liverpool, M. Cristina Marchetti

Physics - All Scholarship

We study the viscoelasticity of an active solution of polar biofilaments and motor proteins. Using a molecular model, we derive the constitutive equations for the stress tensor in the isotropic phase and in phases with liquid crystalline order. The stress relaxation in the various phases is discussed. Contractile activity is responsible for a spectacular difference in the viscoelastic properties on opposite sides of the order-disorder transition.


Hydrodynamic And Rheology Of Active Polar Filaments, Tanniemola B. Liverpool, M. Cristina Marchetti Mar 2007

Hydrodynamic And Rheology Of Active Polar Filaments, Tanniemola B. Liverpool, M. Cristina Marchetti

Physics - All Scholarship

The cytoskeleton provides eukaryotic cells with mechanical support and helps them perform their biological functions. It is a network of semiflexible polar protein filaments and many accessory proteins that bind to these filaments, regulate their assembly, link them to organelles and continuously remodel the network. Here we review recent theoretical work that aims to describe the cytoskeleton as a polar continuum driven out of equilibrium by internal chemical reactions. This work uses methods from soft condensed matter physics and has led to the formulation of a general framework for the description of the structure and rheology of active suspension of …


Sound-Propagation Gap In Fluid Mixtures, Supurna Sinha, M. Cristina Marchetti May 2006

Sound-Propagation Gap In Fluid Mixtures, Supurna Sinha, M. Cristina Marchetti

Physics - All Scholarship

We discuss the behavior of the extended sound modes of a dense binary hard-sphere mixture. In a dense simple hard-sphere fluid the Enskog theory predicts a gap in the sound propagation at large wave vectors. In a binary mixture the gap is only present for low concentrations of one of the two species. At intermediate concentrations sound modes are always propagating. This behavior is not affected by the mass difference of the two species, but it only depends on the packing fractions. The gap is absent when the packing fractions are comparable and the mixture structurally resembles a metallic glass.


Mode-Coupling Theory Of The Stress-Tensor Autocorrelation Function Of A Dense Binary Fluid Mixture, Supurna Sinha, M. Cristina Marchetti May 2006

Mode-Coupling Theory Of The Stress-Tensor Autocorrelation Function Of A Dense Binary Fluid Mixture, Supurna Sinha, M. Cristina Marchetti

Physics - All Scholarship

We present a generalized mode-coupling theory for a dense binary fluid mixture. The theory is used to calculate molecular-scale renormalizations to the stress-tensor autocorrelation function (STAF) and to the long-wavelength zero-frequency shear viscosity. As in the case of a dense simple fluid, we find that the STAF appears to decay as t−3/2 over an intermediate range of time. The coefficient of this long-time tail

is more than two orders of magnitude larger than that obtained from conventional mode-coupling theory. Our study focuses on the effect of compositional disorder on the decay of the STAF in a dense mixture.


Bridging The Microscopic And The Hydrodynamic In Active Filament Solutions, Tanniemola B. Liverpool, M. Cristina Marchetti Jun 2004

Bridging The Microscopic And The Hydrodynamic In Active Filament Solutions, Tanniemola B. Liverpool, M. Cristina Marchetti

Physics - All Scholarship

Hydrodynamic equations for an isotropic solution of active polar filaments are derived from a microscopic mean-field model of the forces exchanged between motors and filaments. We find that a spatial dependence of the motor stepping rate along the filament is essential to drive bundle formation. A number of differences arise as compared to hydrodynamics derived (earlier) from a mesoscopic model where relative filament velocities were obtained on the basis of symmetry considerations. Due to the anisotropy of filament diffusion, motors are capable of generating net filament motion relative to the solvent. The effect of this new term on the stability …