Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Singapore Management University

Discipline
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 4262

Full-Text Articles in Physical Sciences and Mathematics

Taxthemis: Interactive Mining And Exploration Of Suspicious Tax Evasion Group, Yating Lin, Kamkwai Wong, Yong Wang, Rong Zhang, Bo Dong, Huamin Qu, Qinghua Zheng Oct 2021

Taxthemis: Interactive Mining And Exploration Of Suspicious Tax Evasion Group, Yating Lin, Kamkwai Wong, Yong Wang, Rong Zhang, Bo Dong, Huamin Qu, Qinghua Zheng

Research Collection School Of Computing and Information Systems

Tax evasion is a serious economic problem for many countries, as it can undermine the government’s tax system and lead to an unfair business competition environment. Recent research has applied data analytics techniques to analyze and detect tax evasion behaviors of individual taxpayers. However, they have failed to support the analysis and exploration of the related party transaction tax evasion (RPTTE) behaviors (e.g., transfer pricing), where a group of taxpayers is involved. In this paper, we present TaxThemis, an interactive visual analytics system to help tax officers mine and explore suspicious tax evasion groups through analyzing heterogeneous tax-related ...


Qlens: Visual Analytics Of Multi-Step Problem-Solving Behaviors For Improving Question Design, Meng Xia, Reshika P. Velumani, Yong Wang, Huamin Qu, Xiaojuan Ma Oct 2021

Qlens: Visual Analytics Of Multi-Step Problem-Solving Behaviors For Improving Question Design, Meng Xia, Reshika P. Velumani, Yong Wang, Huamin Qu, Xiaojuan Ma

Research Collection School Of Computing and Information Systems

With the rapid development of online education in recent years, there has been an increasing number of learning platforms that provide students with multi-step questions to cultivate their problem-solving skills. To guarantee the high quality of such learning materials, question designers need to inspect how students’ problem-solving processes unfold step by step to infer whether students’ problem-solving logic matches their design intent. They also need to compare the behaviors of different groups (e.g., students from different grades) to distribute questions to students with the right level of knowledge. The availability of fine-grained interaction data, such as mouse movement trajectories ...


Tradao: A Visual Analytics System For Trading Algorithm Optimization, Ka Wing Tsang, Haotian Li, Fuk Ming Lam, Yifan Mu, Yong Wang, Huamin Qu Oct 2021

Tradao: A Visual Analytics System For Trading Algorithm Optimization, Ka Wing Tsang, Haotian Li, Fuk Ming Lam, Yifan Mu, Yong Wang, Huamin Qu

Research Collection School Of Computing and Information Systems

With the wide applications of algorithmic trading, it has become critical for traders to build a winning trading algorithm to beat the market. However, due to the lack of efficient tools, traders mainly rely on their memory to manually compare the algorithm instances of a trading algorithm and further select the best trading algorithm instance for the real trading deployment. We work closely with industry practitioners to discover and consolidate user requirements and develop an interactive visual analytics system for trading algorithm optimization. Structured expert interviews are conducted to evaluateTradAOand a representative case study is documented for illustrating the system ...


Visual Analysis Of Discrimination In Machine Learning, Qianwen Wang, Zhenghua Xu, Zhutian Chen, Yong Wang, Yong Wang, Huamin Qu Oct 2021

Visual Analysis Of Discrimination In Machine Learning, Qianwen Wang, Zhenghua Xu, Zhutian Chen, Yong Wang, Yong Wang, Huamin Qu

Research Collection School Of Computing and Information Systems

The growing use of automated decision-making in critical applications, such as crime prediction and college admission, has raised questions about fairness in machine learning. How can we decide whether different treatments are reasonable or discriminatory? In this paper, we investigate discrimination in machine learning from a visual analytics perspective and propose an interactive visualization tool, DiscriLens, to support a more comprehensive analysis. To reveal detailed information on algorithmic discrimination, DiscriLens identifies a collection of potentially discriminatory itemsets based on causal modeling and classification rules mining. By combining an extended Euler diagram with a matrix-based visualization, we develop a novel set ...


A Bert-Based Two-Stage Model For Chinese Chengyu Recommendation, Minghuan Tan, Jing Jiang, Bingtian Dai Aug 2021

A Bert-Based Two-Stage Model For Chinese Chengyu Recommendation, Minghuan Tan, Jing Jiang, Bingtian Dai

Research Collection School Of Computing and Information Systems

In Chinese, Chengyu are fixed phrases consisting of four characters. As a type of idioms, their meanings usually cannot be derived from their component characters. In this paper, we study the task of recommending a Chengyu given a textual context. Observing some of the limitations with existing work, we propose a two-stage model, where during the first stage we re-train a Chinese BERT model by masking out Chengyu from a large Chinese corpus with a wide coverage of Chengyu. During the second stage, we fine-tune the retrained, Chengyu-oriented BERT on a specific Chengyu recommendation dataset. We evaluate this method on ...


A Novel Dynamic Analysis Infrastructure To Instrument Untrusted Execution Flow Across User-Kernel Spaces, Jiaqi Hong, Xuhua Ding May 2021

A Novel Dynamic Analysis Infrastructure To Instrument Untrusted Execution Flow Across User-Kernel Spaces, Jiaqi Hong, Xuhua Ding

Research Collection School Of Computing and Information Systems

Code instrumentation and hardware based event trapping are two primary approaches used in dynamic malware analysis systems. In this paper, we propose a new approach called Execution Flow Instrumentation (EFI) where the analyzer execution flow is interleaved with the target flow in user- and kernel-mode, at junctures flexibly chosen by the analyzer at runtime. We also propose OASIS as the system infrastructure to realize EFI with virtues of the current two approaches, however without their drawbacks. Despite being securely and transparently isolated from the target, the analyzer introspects and controls it in the same native way as instrumentation code. We ...


Tripdecoder: Study Travel Time Attributes And Route Preferences Of Metro Systems From Smart Card Data, Xiancai Tian, Baihua Zheng, Yazhe Wang, Hsao-Ting Huang, Chih-Cheng Hung May 2021

Tripdecoder: Study Travel Time Attributes And Route Preferences Of Metro Systems From Smart Card Data, Xiancai Tian, Baihua Zheng, Yazhe Wang, Hsao-Ting Huang, Chih-Cheng Hung

Research Collection School Of Computing and Information Systems

In this paper, we target at recovering the exact routes taken by commuters inside a metro system that are not captured by an Automated Fare Collection (AFC) system and hence remain unknown. We strategically propose two inference tasks to handle the recovering, one to infer the travel time of each travel link that contributes to the total duration of any trip inside a metro network and the other to infer the route preferences based on historical trip records and the travel time of each travel link inferred in the previous inference task. As these two inference tasks have interrelationship, most ...


Working With Smart Machines: Insights On The Future Of Work, Tom Davenport, Steven Miller May 2021

Working With Smart Machines: Insights On The Future Of Work, Tom Davenport, Steven Miller

Research Collection School Of Computing and Information Systems

In this article, we share our observations on how and why AI-based systems are being deployed. We look at how these systems have been integrated into existing and new work processes, especially the implications for the changing nature of work and how it will be conducted in future with AI-based smart machines. This will help companies that are in the earlier stages of considering, planning, or deploying these systems to know what to expect from recent developments in practice. We draw our analysis from 24 case studies that we have recently completed on AI system usage in actual operational settings.


Enconter: Entity Constrained Progressive Sequence Generation Via Insertion-Based Transformer, Lee Hsun Hsieh, Yang Yin Lee, Ee-Peng Lim Apr 2021

Enconter: Entity Constrained Progressive Sequence Generation Via Insertion-Based Transformer, Lee Hsun Hsieh, Yang Yin Lee, Ee-Peng Lim

Research Collection School Of Computing and Information Systems

Pretrained using large amount of data, autoregressive language models are able to generate high quality sequences. However, these models do not perform well under hard lexical constraints as they lack fine control of content generation process. Progressive insertion-based transformers can overcome the above limitation and efficiently generate a sequence in parallel given some input tokens as constraint. These transformers however may fail to support hard lexical constraints as their generation process is more likely to terminate prematurely. The paper analyses such early termination problems and proposes the ENtity-CONstrained insertion TransformER (ENCONTER), a new insertion transformer that addresses the above pitfall ...


Practical Server-Side Wifi-Based Indoor Localization: Addressing Cardinality & Outlier Challenges For Improved Occupancy Estimation, Anuradha Ravi, Archan Misra Apr 2021

Practical Server-Side Wifi-Based Indoor Localization: Addressing Cardinality & Outlier Challenges For Improved Occupancy Estimation, Anuradha Ravi, Archan Misra

Research Collection School Of Computing and Information Systems

Server-side WiFi-based indoor localization offers a compelling approach for passive occupancy estimation (i.e., without requiring active participation by client devices, such as smartphones carried by visitors), but is known to suffer from median error of 6–8 meters. By analyzing the characteristics of an operationally-deployed, WiFi-based passive indoor location system, based on the classical RADAR algorithm, we identify and tackle 2 practical challenges for accurate individual device localization. The first challenge is the low-cardinality issue, whereby only the associated AP generates sufficiently frequent RSSI reports, causing a client to experience large localization error due to the absence of sufficient ...


Structurally Enriched Entity Mention Embedding From Semi-Structured Textual Content, Lee Hsun Hsieh, Yang Yin Lee, Ee-Peng Lim Mar 2021

Structurally Enriched Entity Mention Embedding From Semi-Structured Textual Content, Lee Hsun Hsieh, Yang Yin Lee, Ee-Peng Lim

Research Collection School Of Computing and Information Systems

In this research, we propose a novel and effective entity mention embedding framework that learns from semi-structured text corpus with annotated entity mentions without the aid of well-constructed knowledge graph or external semantic information other than the corpus itself. Based on the co-occurrence of words and entity mentions, we enrich the co-occurrence matrix with entity-entity, entity-word, and word-entity relationships as well as the simple structures within the documents. Experimentally, we show that our proposed entity mention embedding benefits from the structural information in link prediction task measured by mean reciprocal rank (MRR) and mean precision@K (MP@K) on two ...


All The Wiser: Fake News Intervention Using User Reading Preferences, Kuan Chieh Lo, Shih Chieh Dai, Aiping Xiong, Jing Jiang, Lun Wei Ku Mar 2021

All The Wiser: Fake News Intervention Using User Reading Preferences, Kuan Chieh Lo, Shih Chieh Dai, Aiping Xiong, Jing Jiang, Lun Wei Ku

Research Collection School Of Computing and Information Systems

To address the increasingly significant issue of fake news, we develop a news reading platform in which we propose an implicit approach to reduce people's belief in fake news. Specifically, we leverage reinforcement learning to learn an intervention module on top of a recommender system (RS) such that the module is activated to replace RS to recommend news toward the verification once users touch the fake news. To examine the effect of the proposed method, we conduct a comprehensive evaluation with 89 human subjects and check the effective rate of change in belief but without their other limitations. Moreover ...


Improving Multi-Hop Knowledge Base Question Answering By Learning Intermediate Supervision Signals, Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, Ji Rong Wen Mar 2021

Improving Multi-Hop Knowledge Base Question Answering By Learning Intermediate Supervision Signals, Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, Ji Rong Wen

Research Collection School Of Computing and Information Systems

Multi-hop Knowledge Base Question Answering (KBQA) aims to find the answer entities that are multiple hops away in the Knowledge Base (KB) from the entities in the question. A major challenge is the lack of supervision signals at intermediate steps. Therefore, multi-hop KBQA algorithms can only receive the feedback from the final answer, which makes the learning unstable or ineffective. To address this challenge, we propose a novel teacher-student approach for the multi-hop KBQA task. In our approach, the student network aims to find the correct answer to the query, while the teacher network tries to learn intermediate supervision signals ...


Investigating The Adoption Of Hybrid Encrypted Cloud Data Deduplication With Game Theory, Xueqin Liang, Zheng Yan, Robert H. Deng, Qinghu Zheng Mar 2021

Investigating The Adoption Of Hybrid Encrypted Cloud Data Deduplication With Game Theory, Xueqin Liang, Zheng Yan, Robert H. Deng, Qinghu Zheng

Research Collection School Of Computing and Information Systems

Encrypted data deduplication, along with different preferences in data access control, brings the birth of hybrid encrypted cloud data deduplication (H-DEDU for short). However, whether H-DEDU can be successfully deployed in practice has not been seriously investigated. Obviously, the adoption of H-DEDU depends on whether it can bring economic benefits to all stakeholders. But existing economic models of cloud storage fail to support H-DEDU due to complicated interactions among stakeholders. In this article, we establish a formal economic model of H-DEDU by formulating the utilities of all involved stakeholders, i.e., data holders, data owners, and Cloud Storage Providers (CSPs ...


Can We Classify Cashless Payment Solution Implementations At The Country Level?, Dennis Ng, Robert J. Kauffman, Paul Robert Griffin Feb 2021

Can We Classify Cashless Payment Solution Implementations At The Country Level?, Dennis Ng, Robert J. Kauffman, Paul Robert Griffin

Research Collection School Of Computing and Information Systems

This research commentary proposes a 3-D implementation classification framework to assist service providers and business leaders in understanding the kinds of contexts in which more or less successful cashless payment solutions are observed at point-of-sale (PoS) settings. Three constructs characterize the framework: the digitalization of the local implementation environment; the relative novelty of a given payment technology solution in a country at a specific point in time; and the development status of the country’s national infrastructure. The framework is motivated by a need to support cross-country research in this domain. We analyze eight country mini-cases based on an eight-facet ...


Fireeye: Cybersecurity In Action, Singapore Management University Jan 2021

Fireeye: Cybersecurity In Action, Singapore Management University

Perspectives@SMU

FireEye built its success on its ‘Human + AI’ philosophy. But can a cybersecurity firm get ahead of the attackers and predict an attack…on itself?


Rapid Transition Of A Technical Course From Face-To-Face To Online, Swapna Gottipatti, Venky Shankaraman Jan 2021

Rapid Transition Of A Technical Course From Face-To-Face To Online, Swapna Gottipatti, Venky Shankaraman

Research Collection School Of Computing and Information Systems

Just like most universities around the world, the senior management at Singapore Management University decided to move all courses to a virtual, online, synchronous mode, giving instructors a very short notice period—one week—to make this transition. In this paper, we describe the challenges, practical solutions adopted, and the lessons learnt in rapidly transitioning a face-to-face Master’s degree course in Text Analytics and Applications into a virtual, online, course format that could deliver a quality learning experience.


Sociological Perspectives On Climate Change And Society: A Review, Md Saidul Islam, Edson Kieu Jan 2021

Sociological Perspectives On Climate Change And Society: A Review, Md Saidul Islam, Edson Kieu

Research Collection Lee Kong Chian School Of Business

Society is at an important intersection in dealing with the challenges of climate change, and this paper is presented at a critical juncture in light of growing recognition that the natural sciences are insufficient to deal with these challenges. Critical aspects of sociological perspectives related to climate change research are brought together in this review in the hope of fostering greater interdisciplinary collaboration between the natural and social sciences. We fervently argue for the need to inculcate interdisciplinary approaches that can provide innovative perspectives and solutions to the challenges we face from the impacts of climate change. As such, some ...


Learning Adl Daily Routines With Spatiotemporal Neural Networks, Shan Gao, Ah-Hwee Tan, Rossi Setchi Jan 2021

Learning Adl Daily Routines With Spatiotemporal Neural Networks, Shan Gao, Ah-Hwee Tan, Rossi Setchi

Research Collection School Of Computing and Information Systems

The activities of daily living (ADLs) refer to the activities performed by individuals on a daily basis and are the indicators of a person’s habits, lifestyle, and wellbeing. Learning an individual’s ADL daily routines has significant value in the healthcare domain. Specifically, ADL recognition and inter-ADL pattern learning problems have been studied extensively in the past couple of decades. However, discovering the patterns performed in a day and clustering them into ADL daily routines has been a relatively unexplored research area. In this paper, a self-organizing neural network model, called the Spatiotemporal ADL Adaptive Resonance Theory (STADLART), is ...


Privattnet: Predicting Privacy Risks In Images Using Visual Attention, Zhang Chen, Thivya Kandappu, Vigneshwaran Subbaraju Jan 2021

Privattnet: Predicting Privacy Risks In Images Using Visual Attention, Zhang Chen, Thivya Kandappu, Vigneshwaran Subbaraju

Research Collection School Of Computing and Information Systems

Visual privacy concerns associated with image sharing is a critical issue that need to be addressed to enable safe and lawful use of online social platforms. Users of social media platforms often suffer from no guidance in sharing sensitive images in public, and often face with social and legal consequences. Given the recent success of visual attention based deep learning methods in measuring abstract phenomena like image memorability, we are motivated to investigate whether visual attention based methods could be useful in measuring psychophysical phenomena like “privacy sensitivity”. In this paper we propose PrivAttNet – a visual attention based approach, that ...


Spatial Analysis Of Big Data Industrial Agglomeration And Development In China, Yanru Lu, Kai Cao Jan 2021

Spatial Analysis Of Big Data Industrial Agglomeration And Development In China, Yanru Lu, Kai Cao

Research Collection School Of Computing and Information Systems

Nowadays, our daily life constantly creates and needs to utilize tremendous amounts of datasets. Fortunately, the technologies of the internet, both in software and hardware, have the capability to transmit, store, and operate big data. With China being the most populous country in the world, developing the big data industry is, therefore, seen as an urgent task. As generating industrial agglomeration is important for forming a mature industry, this study aims to characterize the phenomenon of big data industrial agglomeration in China, and to identify the factors for developing the big data industry using spatial analysis approaches and GIS technology ...


Partial Adversarial Behavior Deception In Security Games, Thanh H. Nguyen, Arunesh Sinha, He He Jan 2021

Partial Adversarial Behavior Deception In Security Games, Thanh H. Nguyen, Arunesh Sinha, He He

Research Collection School Of Computing and Information Systems

Learning attacker behavior is an important research topic in security games as security agencies are often uncertain about attackers’ decision making. Previous work has focused on developing various behavioral models of attackers based on historical attack data. However, a clever attacker can manipulate its attacks to fail such attack-driven learning, leading to ineffective defense strategies. We study attacker behavior deception with three main contributions. First, we propose a new model, named partial behavior deception model, in which there is a deceptive attacker (among multiple attackers) who controls a portion of attacks. Our model captures real-world security scenarios such as wildlife ...


Scalable Online Vetting Of Android Apps For Measuring Declared Sdk Versions And Their Consistency With Api Calls, Daoyuan Wu, Debin Gao, David Lo Jan 2021

Scalable Online Vetting Of Android Apps For Measuring Declared Sdk Versions And Their Consistency With Api Calls, Daoyuan Wu, Debin Gao, David Lo

Research Collection School Of Computing and Information Systems

Android has been the most popular smartphone system with multiple platform versions active in the market. To manage the application’s compatibility with one or more platform versions, Android allows apps to declare the supported platform SDK versions in their manifest files. In this paper, we conduct a systematic study of this modern software mechanism. Our objective is to measure the current practice of declared SDK versions (which we term as DSDK versions afterwards) in real apps, and the (in)consistency between DSDK versions and their host apps’ API calls. To successfully analyze a modern dataset of 22,687 popular ...


A Near-Optimal Change-Detection Based Algorithm For Piecewise-Stationary Combinatorial Semi-Bandits, Huozhi Zhou, Lingda Wang, Lav N. Varshney, Ee Peng Lim Dec 2020

A Near-Optimal Change-Detection Based Algorithm For Piecewise-Stationary Combinatorial Semi-Bandits, Huozhi Zhou, Lingda Wang, Lav N. Varshney, Ee Peng Lim

Research Collection School Of Computing and Information Systems

We investigate the piecewise-stationary combinatorial semi-bandit problem. Compared to the original combinatorial semi-bandit problem, our setting assumes the reward distributions of base arms may change in a piecewise-stationary manner at unknown time steps. We propose an algorithm, GLR-CUCB, which incorporates an efficient combinatorial semi-bandit algorithm, CUCB, with an almost parameter-free change-point detector, the Generalized Likelihood Ratio Test (GLRT). Our analysis shows that the regret of GLR-CUCB is upper bounded by O(√NKT logT), where N is the number of piecewise-stationary segments, K is the number of base arms, and T is the number of time steps. As a complement, we ...


How Do Monetary Incentives Influence Prosocial Fundraising? An Empirical Investigation Of Matching Subsidies On Crowdfunding, Zhiyuan Gao Dec 2020

How Do Monetary Incentives Influence Prosocial Fundraising? An Empirical Investigation Of Matching Subsidies On Crowdfunding, Zhiyuan Gao

Dissertations and Theses Collection (Open Access)

Monetary incentives, such as matching subsidies, are widely used in traditional fundraising and crowdfunding platforms to boost funding activities and improve funding outcomes. However, its effectiveness on prosocial fundraising is still unclear from both theoretical (Bénabou and Tirole, 2006; Frey, 1997; Meier, 2007a) and empirical studies (Ariely et al., 2009; Karlan and List, 2007; Rondeau and List, 2008). This dissertation aims to examine the effectiveness of matching subsidies on prosocial fundraising in the crowdfunding context. Specifically, I study how the presence of matching subsidies affects overall funding outcomes and funding dynamics in the online prosocial crowdfunding environment.

The first essay ...


Driving Cybersecurity Policy Insights From Information On The Internet, Qiu-Hong Wang, Steven Mark Miller, Robert H. Deng Dec 2020

Driving Cybersecurity Policy Insights From Information On The Internet, Qiu-Hong Wang, Steven Mark Miller, Robert H. Deng

Research Collection School Of Computing and Information Systems

Cybersecurity policy analytics quantitatively evaluates the effectiveness of cybersecurity protection measures consisting of both technical and managerial countermeasures and is inherently interdisciplinary work, drawing on the concepts and methods from economics, business, social science, and law.


Differential Privacy Protection Over Deep Learning: An Investigation Of Its Impacted Factors, Ying Lin, Ling-Yan Bao, Ze-Minghui Li, Shu-Sheng Si, Chao-Hsien Chu Dec 2020

Differential Privacy Protection Over Deep Learning: An Investigation Of Its Impacted Factors, Ying Lin, Ling-Yan Bao, Ze-Minghui Li, Shu-Sheng Si, Chao-Hsien Chu

Research Collection School Of Computing and Information Systems

Deep learning (DL) has been widely applied to achieve promising results in many fields, but it still exists various privacy concerns and issues. Applying differential privacy (DP) to DL models is an effective way to ensure privacy-preserving training and classification. In this paper, we revisit the DP stochastic gradient descent (DP-SGD) method, which has been used by several algorithms and systems and achieved good privacy protection. However, several factors, such as the sequence of adding noise, the models used etc., may impact its performance with various degrees. We empirically show that adding noise first and clipping second will not only ...


Renewal Of An Information Systems Curriculum To Support Career Based Tracks: A Case Study, Gottipati Swapna, Shankararaman, Venky, Kyong Jin Shim Dec 2020

Renewal Of An Information Systems Curriculum To Support Career Based Tracks: A Case Study, Gottipati Swapna, Shankararaman, Venky, Kyong Jin Shim

Research Collection School Of Computing and Information Systems

The pace at which technology redefines traditional job functions is picking up rapidly. This trend is triggered particularly by advances in analytics, security, cloud computing, Artificial Intelligence and big data. The purpose of this paper is to present a case study on our approach to renewing an undergraduate IS Major curriculum to align with the needs of the industry. We adopt a survey based approach to study Information Systems (IS) graduate skills requirements and re-design the curriculum framework for the IS program at our school. The paper describes in detail the process, the redesigned IS curriculum, the impact of the ...


Co-Embedding Attributed Networks With External Knowledge, Pei-Chi Lo, Ee Peng Lim Dec 2020

Co-Embedding Attributed Networks With External Knowledge, Pei-Chi Lo, Ee Peng Lim

Research Collection School Of Computing and Information Systems

Attributed network embedding aims to learn representations of nodes and their attributes in a low-dimensional space that preserves their semantics. The existing embedding models, however, consider node connectivity and node attributes only while ignoring external knowledge that can enhance node representations for downstream applications. In this paper, we propose a set of new VAE-based embedding models called External Knowledge-Aware Co-Embedding Attributed Network (ECAN) Embeddings to incorporate associations among attributes from relevant external knowledge. Such external knowledge can be extracted from text corpus and knowledge graphs. We use multi-VAE structures to model the attribute associations. To cope with joint encoding of ...


Blockchain-Based Public Auditing And Secure Deduplication With Fair Arbitration, Haoran Yuan, Xiaofeng Chen, Jianfeng Wang, Jiaming Yuan, Hongyang Yan, Willy Susilo Dec 2020

Blockchain-Based Public Auditing And Secure Deduplication With Fair Arbitration, Haoran Yuan, Xiaofeng Chen, Jianfeng Wang, Jiaming Yuan, Hongyang Yan, Willy Susilo

Research Collection School Of Computing and Information Systems

Data auditing enables data owners to verify the integrity of their sensitive data stored at an untrusted cloud without retrieving them. This feature has been widely adopted by commercial cloud storage. However, the existing approaches still have some drawbacks. On the one hand, the existing schemes have a defect of fair arbitration, i.e., existing auditing schemes lack an effective method to punish the malicious cloud service provider (CSP) and compensate users whose data integrity is destroyed. On the other hand, a CSP may store redundant and repetitive data. These redundant data inevitably increase management overhead and computational cost during ...