Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 28 of 28

Full-Text Articles in Physical Sciences and Mathematics

Unraveling Sources Of Cyanate In The Marine Environment: Insights From Cyanate Distributions And Production During The Photochemical Degradation Of Dissolved Organic Matter, Rui Wang, Jihua Liu, Yongle Xu, Li Liu, Kenneth Mopper Jan 2024

Unraveling Sources Of Cyanate In The Marine Environment: Insights From Cyanate Distributions And Production During The Photochemical Degradation Of Dissolved Organic Matter, Rui Wang, Jihua Liu, Yongle Xu, Li Liu, Kenneth Mopper

Chemistry & Biochemistry Faculty Publications

Cyanate is a nitrogen and energy source for diverse marine microorganisms, playing important roles in the nitrogen cycle. Despite the extensive research on cyanate utilization, the sources of this nitrogen compound remain largely enigmatic. To unravel the sources of cyanate, distributions and production of cyanate during photochemical degradation of natural dissolved organic matter (DOM) were investigated across various environments, including freshwater, estuarine, coastal areas in Florida, and the continental and slope regions of the North American mid-Atlantic Ocean (NATL). Cyanate production was also examined during the photochemical degradation of exudates from a typical strain of Synechococcus, an important phytoplankton …


Molecular Evidence For The Export Of Terrigenous Organic Matter To The North Gulf Of Mexico By Solid-State 13C Nmr And Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Of Humic Acids, Sarah Ann Ware May 2023

Molecular Evidence For The Export Of Terrigenous Organic Matter To The North Gulf Of Mexico By Solid-State 13C Nmr And Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Of Humic Acids, Sarah Ann Ware

Chemistry & Biochemistry Theses & Dissertations

Marine organic matter is mainly believed to originate from autochthonous organic matter, while terrigenous organic matter is assumed to be largely degraded prior to reaching the open ocean or more recently replaced by marine organic matter via a stripping process. Sediment samples along a transect extending from the Mississippi River Birdsfoot Delta to the Mississippi Canyon on the Louisiana continental shelf were examined by advanced analytical techniques, electrospray ionization coupled to a 12T Fourier transform ion cyclotron resonance mass spectrometer (ESI-FTICR-MS) and quantitative solid-state multiple cross polarization magic angle spinning (multi-CPMAS) 13C NMR in an effort to understand the …


Abiotic Formation Of Dissolved Organic Sulfur In Anoxic Sediments Of Santa Barbara Basin, Hussain A. Abdulla, David J. Burdige, Tomoko Komada Jan 2020

Abiotic Formation Of Dissolved Organic Sulfur In Anoxic Sediments Of Santa Barbara Basin, Hussain A. Abdulla, David J. Burdige, Tomoko Komada

OES Faculty Publications

Sulfurization has been found to enhance organic matter preservation and petroleum formation in marine sediments. However, we do not yet have a comprehensive understanding of sulfurization mechanisms. In this study, we investigated several possible mechanisms of dissolved organic sulfur (DOS) formation in the top 4.5 m of anoxic sediments of Santa Barbara Basin (SBB), California Borderland. Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS), we identified chemical formulas of potential dissolved organic matter (DOM) precursors to these DOS compounds. We also examined how the formulas of abiotically formed DOS changed as a function of depth across a major redox …


Studies On Hydroxyl Radical Formation And Correlated Photoflocculation Process Using Degraded Wood Leachate As A Cdom Source, Luni Sun, Kenneth Mopper Jan 2016

Studies On Hydroxyl Radical Formation And Correlated Photoflocculation Process Using Degraded Wood Leachate As A Cdom Source, Luni Sun, Kenneth Mopper

Chemistry & Biochemistry Faculty Publications

In this study, we examined hydroxyl radical (•OH) formation with respect to photoreactivity of colored dissolved organic matter (CDOM), the Fenton reaction, and photoflocculation using leachate from decaying wood. The relationship between •OH photoproduction rate and leachate optical properties (UV-visible absorption and fluorescence excitation-emission matrices (EEMS)) was studied during irradiation using a UV solar simulator. The results showed that the •OH photochemical formation rate is strongly related to humic-like fluorescence as characterized by parallel factor analysis (PARAFAC), and that these fluorescence components are more photolabile than most of the other CDOM components. Fourier transform infrared spectroscopy (FT-IR) indicated the photodegradation …


Study Of Photochemical Formation Of Hydroxyl Radical In Natural Waters, Luni Sun Jul 2015

Study Of Photochemical Formation Of Hydroxyl Radical In Natural Waters, Luni Sun

Chemistry & Biochemistry Theses & Dissertations

This dissertation mainly focuses on the sources of the hydroxyl radical (•OH) from photochemical reactions in natural waters, in particular from reactions involving dissolved organic matter (DOM). Firstly, an accurate method for estimating •OH formation rate during long-term irradiation was developed. It was observed that previous methods for measuring •OH formation rates in the natural waters, which were based upon sequentially determined cumulative concentrations of probe photoproducts, significantly underestimated actual •OH formation rates. It was found that the underestimation was mainly due to the degradation of the probe photoproducts and that only ‘instantaneous’ formation rates were appropriate for accurately estimating …


Characterization Of Terrestrial Dissolved Organic Matter Fractionated By Ph And Polarity And Their Biological Effects On Plant Growth, Rachel L. Sleighter, Paolo Caricasole, Kristen M. Richards, Terry Hanson, Patrick G. Hatcher Jan 2015

Characterization Of Terrestrial Dissolved Organic Matter Fractionated By Ph And Polarity And Their Biological Effects On Plant Growth, Rachel L. Sleighter, Paolo Caricasole, Kristen M. Richards, Terry Hanson, Patrick G. Hatcher

Chemistry & Biochemistry Faculty Publications

Background: Humic substances are ubiquitous in the environment, complex mixtures, and known to be beneficial to plant growth. To better understand and identify components responsible for plant growth stimulation, a terrestrial aquatic DOM sample was fractionated according to pH and polarity, obtaining acid-soluble and acid-insoluble portions, as well as acid-soluble hydrophobic and hydrophilic fractions using C18. The various fractions were characterized then evaluated for their biological effects on plant growth using bioassays with corn at two carbon rates.

Results: Approximately 43% and 57% of the carbon, and 31% and 69% of the iron, was found in the acid-insoluble and acid-soluble …


Spectroscopic Characterization Of Oceanic Dissolved Organic Matter Isolated By Reverse Osmosis Coupled With Electrodialysis, John R. Helms, Jingdong Mao, Hongmei Chen, E. Michael Perdue, Nelson W. Green, Patrick G. Hatcher, Kenneth Mopper, Aron Stubbins Jan 2015

Spectroscopic Characterization Of Oceanic Dissolved Organic Matter Isolated By Reverse Osmosis Coupled With Electrodialysis, John R. Helms, Jingdong Mao, Hongmei Chen, E. Michael Perdue, Nelson W. Green, Patrick G. Hatcher, Kenneth Mopper, Aron Stubbins

Chemistry & Biochemistry Faculty Publications

Oceanic dissolved organic matter (DOM) is one of the largest pools of reduced carbon on Earth, yet DOM remains poorly chemically characterized. Studies to determine the chemical nature of oceanic DOM have been impeded by the lack of efficient and non-fractioning methods to recover oceanic DOM. Here, a DOM fraction (~40 to 86% recovery) was isolated using reverse osmosis/electrodialysis (RO/ED) and analyzed by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Samples were obtained from biogeochemically distinct environments: photobleached surface gyre, productive coastal upwelling zone, oxygen minimum, North Atlantic Deep Water, and North Pacific Deep Water. A ubiquitous ‘background’ refractory …


Mass Loss And Chemical Structures Of Wheat And Maize Straws In Response To Ultravoilet-B Radiation And Soil Contact, Guixiang Zhou, Jiabao Zhang, Jingdong Mao, Congzhi Zhang, Lin Chen, Xiuli Xin, Bingzi Zhao Jan 2015

Mass Loss And Chemical Structures Of Wheat And Maize Straws In Response To Ultravoilet-B Radiation And Soil Contact, Guixiang Zhou, Jiabao Zhang, Jingdong Mao, Congzhi Zhang, Lin Chen, Xiuli Xin, Bingzi Zhao

Chemistry & Biochemistry Faculty Publications

The role of photodegradation, an abiotic process, has been largely overlooked during straw decomposition in mesic ecosystems. We investigated the mass loss and chemical structures of straw decomposition in response to elevated UV-B radiation with or without soil contact over a 12-month litterbag experiment. Wheat and maize straw samples with and without soil contact were exposed to three radiation levels: a no-sunlight control, ambient solar UV-B, and artificially elevated UV-B radiation. A block control with soil contact was not included. Compared with the no-sunlight control, UV-B radiation increased the mass loss by 14-19% and the ambient radiation by 9-16% for …


Spectroscopic Characterization Of Dissolved Organic Matter: Insights Into The Linkage Between Sources And Chemical Composition, Xiaoyan Cao Jan 2014

Spectroscopic Characterization Of Dissolved Organic Matter: Insights Into The Linkage Between Sources And Chemical Composition, Xiaoyan Cao

Chemistry & Biochemistry Theses & Dissertations

This dissertation investigated the chemical structure of DOM by advanced solid-state nuclear magnetic resonance (NMR) spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) techniques, as well as isotopic measurements and UV-visible spectroscopy, to shed light on the linkages between DOM sources and DOM composition. Unique and extensive sets of DOM samples studied here were isolated from various aquatic systems, covering end-member environments in which DOM is considered either microbially derived or terrestrially derived, and areas in which DOM has characteristics intermediate between the two end members. Important insights into specific site-related questions were also gained such as …


Compositions And Constituents Of Freshwater Dissolved Organic Matter Isolated By Reverse Osmosis, Yulong Zhang, Wen Huang, Jingdong Mao Jan 2014

Compositions And Constituents Of Freshwater Dissolved Organic Matter Isolated By Reverse Osmosis, Yulong Zhang, Wen Huang, Jingdong Mao

Chemistry & Biochemistry Faculty Publications

Dissolved organic matter (DOM) from riverine and lacustrine water was isolated using a reverse osmosis (RO) system. Solid-state 13C nuclear magnetic resonance (13C NMR) was used to quantitatively evaluate the compositions and constituents of DOM, which are compared with previous investigations on marine DOM. Results indicated that concentration factor (CF) was a key metric controlling yield and sorption of DOM on the RO system. The sorption was likely non-selective, based on the 13C NMR and δ13C analyses. Carbohydrates and lipids accounted for 25.0–41.5% and 30.2–46.3% of the identifiable DOM, followed by proteins (18.2–19.8%) and …


A Coupled Geochemical And Biogeochemical Approach To Characterize The Bioreactivity Of Dissolved Organic Matter From A Headwater Stream, Rachel L. Sleighter, Rose M. Cory, Louis A. Kaplan, Hussain A.N. Abdulla, Patrick G. Hatcher Jan 2014

A Coupled Geochemical And Biogeochemical Approach To Characterize The Bioreactivity Of Dissolved Organic Matter From A Headwater Stream, Rachel L. Sleighter, Rose M. Cory, Louis A. Kaplan, Hussain A.N. Abdulla, Patrick G. Hatcher

Chemistry & Biochemistry Faculty Publications

The bioreactivity or susceptibility of dissolved organic matter (DOM) to microbial degradation in streams and rivers is of critical importance to global change studies, but a comprehensive understanding of DOM bioreactivity has been elusive due, in part, to the stunningly diverse assemblages of organic molecules within DOM. We approach this problem by employing a range of techniques to characterize DOM as it flows through biofilm reactors: dissolved organic carbon (DOC) concentrations, excitation emission matrix spectroscopy (EEMs), and ultrahigh resolution mass spectrometry. The EEMs and mass spectral data were analyzed using a combination of multivariate statistical approaches. We found that 45% …


Estimating Hydroxyl Radical Photochemical Formation Rates In Natural Waters During Long-Term Laboratory Irradiation Experiments, Luni Sun, Hongmei Chen, Hussain A. Abdulla, Kenneth Mopper Jan 2014

Estimating Hydroxyl Radical Photochemical Formation Rates In Natural Waters During Long-Term Laboratory Irradiation Experiments, Luni Sun, Hongmei Chen, Hussain A. Abdulla, Kenneth Mopper

Chemistry & Biochemistry Faculty Publications

In this study it was observed that, during long-term irradiations (>1 day) of natural waters, the methods for measuring hydroxyl radical (˙OH) formation rates based upon sequentially determined cumulative concentrations of photoproducts from probes significantly underestimate actual ˙OH formation rates. Performing a correction using the photodegradation rates of the probe products improves the ˙OH estimation for short term irradiations (<1 day), but not long term irradiations. Only the ‘instantaneous’ formation rates, which were obtained by adding probes to aliquots at each time point and irradiating these sub-samples for a short time (≤2 h), were found appropriate for accurately estimating ˙OH photochemical formation rates during long-term laboratory irradiation experiments. Our results also showed that in iron- and dissolved organic matter (DOM)-rich water samples, ˙OH appears to be mainly produced from the Fenton reaction initially, but subsequently from other sources possibly from DOM photoreactions. Pathways of ˙OH formation in long-term irradiations in relation to H2O2 and iron concentrations are discussed.


Advances In Understanding The Molecular Composition Of Dissolved Organic Matter And Its Reactivity In The Environment, Rajaa Mesfioui Jan 2014

Advances In Understanding The Molecular Composition Of Dissolved Organic Matter And Its Reactivity In The Environment, Rajaa Mesfioui

Chemistry & Biochemistry Theses & Dissertations

Dissolved organic matter (DOM) is the ultimate product of Earth's systems dynamics. DOM chemical signature is strongly shaped by the interaction among Earth's spheres, such as the atmosphere, the geosphere, the biosphere, and the hydrosphere, but also life and human activity. DOM source, composition, photochemical alteration and availability affect freshwater ecosystems, their carbon and nitrogen fluxes and, thus, the global carbon and nitrogen cycles. The aim of this thesis was to gain an understanding of the molecular composition of DOM and its photochemical and biological reactivity in an environment impacted by anthropogenic disturbance. The York and James River systems within …


Spectroscopic Characterization Of Dissolved Organic Matter: Insights Into Composition, Photochemical Transformation And Carbon Cycling, John Robert Helms Jul 2012

Spectroscopic Characterization Of Dissolved Organic Matter: Insights Into Composition, Photochemical Transformation And Carbon Cycling, John Robert Helms

Chemistry & Biochemistry Theses & Dissertations

This dissertation explores processes affecting the composition of dissolved organic matter (DOM) and how DOM composition changes in sunlit surface waters and in the dark interior ocean. Simulated solar irradiations were used to investigate the impact of photochemistry on terrestrial waters and deep ocean DOM. The photochemically mediated processes observed in Dismal Swamp samples included (i) light induced flocculation of up to 12% of the organic matter and 84% of the dissolved iron originally present; (ii) 74-88% mineralization of dissolved organic carbon (DOC) and 95-99% bleaching of chromophoric DOM (CDOM) during 110 days of irradiation; and (iii) nearly complete loss …


Section Abstracts: Chemistry Apr 2011

Section Abstracts: Chemistry

Virginia Journal of Science

Abstracts of the Chemistry Section for the 89th Annual Meeting of the Virginia Academy of Science, May 25-27, 2011, University of Richmond, Richmond VA.


A Mini-Electrodialysis System For Desalting Small Volume Saline Samples For Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Hongmei Chen, Aron Stubbins, Patrick G. Hatcher Jan 2011

A Mini-Electrodialysis System For Desalting Small Volume Saline Samples For Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Hongmei Chen, Aron Stubbins, Patrick G. Hatcher

Chemistry & Biochemistry Faculty Publications

An affordable, commercially available mini-electrodialysis (mini-ED) system has been evaluated for the efficient desalting of small volume samples of seawater before analysis by electrospray Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Mini-ED FT-ICR mass spectra were compared with spectra for samples that were treated by C18 solid phase extraction, a commonly used method for rapid sample preparation for this type of analysis. In this comparison, it is clear that mini-ED provides more representative molecular information, compared with C18 isolation, and recovers the overwhelming majority of peaks from salt-free samples, indicating that it adequately represents the …


Oxygen Isotopes As A Tracer Of Dom Processes In River-Estuary Systems, Joy Ashley Matthews Jul 2010

Oxygen Isotopes As A Tracer Of Dom Processes In River-Estuary Systems, Joy Ashley Matthews

OES Theses and Dissertations

In the biogeochemical study of dissolved organic matter (DOM) in natural waters, stable isotopes are used to provide insight into both the sources of DOM and the processes affecting its alteration. Through the research presented here, oxygen isotopes are incorporated into the study of DOM through the adaptation of a pyrolysis elemental analysis isotope ratio mass spectrometer method, and sample preparation using two-stage ultrafiltration.

The application of oxygen isotopes to the study of DOM is demonstrated in two studies. First, natural abundance of δ18O in DOM is explored in the Delaware estuary. Using a two end-member mixing model, …


Temporal Controls On Dissolved Organic Matter And Lignin Biogeochemistry In A Pristine Tropical River, Democratic Republic Of Congo, Robert G. M. Spencer, Peter J. Hernes, Rosmarie Ruf, Andy Baker, Rachael Y. Dyda, Aron Stubbins, Johan Six Jan 2010

Temporal Controls On Dissolved Organic Matter And Lignin Biogeochemistry In A Pristine Tropical River, Democratic Republic Of Congo, Robert G. M. Spencer, Peter J. Hernes, Rosmarie Ruf, Andy Baker, Rachael Y. Dyda, Aron Stubbins, Johan Six

Chemistry & Biochemistry Faculty Publications

Dissolved organic carbon (DOC), lignin biomarkers, and the optical properties of dissolved organic matter (DOM) were measured in the Epulu River (northeast Democratic Republic of Congo) with the aim of investigating temporal controls on the quantity and chemical composition of DOM in a tropical rainforest river. Three different periods defined by stages of the hydrologic regime of the region, (1) post dry flushing period, (2) intermediary period, and (3) start of the dry period/post flush, were sampled. Temporal variability in DOM quantity and quality was observed with highest DOC, lignin concentration (Σ8) and carbon‐normalized (Λ8) values …


Reactivity And Chemical Characterization Of Dissolved Organic Matter In An Estuary, Hussain A. Abdulla Jul 2009

Reactivity And Chemical Characterization Of Dissolved Organic Matter In An Estuary, Hussain A. Abdulla

OES Theses and Dissertations

This dissertation used Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (13C-NMR) data to quantify the changes of major chemical compound classes in high molecular weight (HMW, >1kDa) DOM isolated along a transect from Great Dismal Swamp through the Elizabeth River/Chesapeake Bay system to the coastal Atlantic Ocean off Virginia, USA. Results show that both carboxylic acids and aromatic compounds are lost along the transect, while amide, and carbohydrate moieties could have a mid-transect source.

Addressing the seasonal and spatial changes in the chemical composition of high molecular weight DOM using C/N ratio and δ13 …


Export Of Terrestrial Dissolved Organic Matter Along A River To Ocean Transect Of The Lower Chesapeake Bay Investigated By Advanced Analytical Techniques, Rachel Leigh Sleighter Jan 2009

Export Of Terrestrial Dissolved Organic Matter Along A River To Ocean Transect Of The Lower Chesapeake Bay Investigated By Advanced Analytical Techniques, Rachel Leigh Sleighter

Chemistry & Biochemistry Theses & Dissertations

Ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) has proved essential for the complete separation of the thousands of peaks present in natural organic matter (NOM), a complex assemblage of organic molecules present in water, soils, and sediments. An improved understanding of its composition is crucial to understand how pollutants interact with NOM and how NOM cycles through global carbon cycles.

Optimizing the acquisition and handling of the FTICR mass spectra is the first step to obtaining high quality data. A simple method to internally calibrate the peaks in the complex spectra, using naturally present fatty …


The Observation, Modeling, And Retrieval Of Bio-Optical Properties For Coastal Waters Of The Southern Chesapeake Bay, Xiaoju Pan Apr 2007

The Observation, Modeling, And Retrieval Of Bio-Optical Properties For Coastal Waters Of The Southern Chesapeake Bay, Xiaoju Pan

OES Theses and Dissertations

The primary purpose of this study was to develop an inverse method to retrieve the inherent optical properties (IOPs) and biogeochemical parameters (e.g. chlorophyll a concentration and salinity) appropriate to monitor the water quality and biogeochemical processes from remote sensing of the coastal waters in the southern Chesapeake Bay and coastal Mid-Atlantic Bight region (MAB) dominated by Case 2 waters. For this purpose, knowledge of the relationship between remote sensing reflectance (Rrs) and IOPs and the effect from bottom reflectance on Rrs, is required.

A substantial investigation of IOPs has been conducted for the coastal …


The Application Of Electrospray Ionization Coupled To Ultrahigh Resolution Mass Spectrometry For The Molecular Characterization Of Natural Organic Matter, Rachel L. Sleighter, Patrick G. Hatcher Jan 2007

The Application Of Electrospray Ionization Coupled To Ultrahigh Resolution Mass Spectrometry For The Molecular Characterization Of Natural Organic Matter, Rachel L. Sleighter, Patrick G. Hatcher

Chemistry & Biochemistry Faculty Publications

Mass spectrometry has recently played a key role in the understanding of natural organic matter (NOM) by providing molecular-level details about its composition. NOM, a complex assemblage of organic molecules present in natural waters and soils/sediments, has the ability to bind and transport anthropogenic materials. An improved understanding of its composition is crucial in order to understand how pollutants interact with NOM and how NOM cycles through global carbon cycles. In the past, low-resolution (> 3000) mass analyzers have offered some insights into the structure of NOM, but emerging ultrahigh resolution (> 200000) techniques such as electrospray ionization (ESI) coupled …


Red And Black Tides: Quantitative Analysis Of Water-Leaving Radiance And Perceived Color For Phytoplankton, Colored Dissolved Organic Matter, And Suspended Sediments, Heidi M. Dierssen, Raphael M. Kudela, John P. Ryan, Richard C. Zimmerman Jan 2006

Red And Black Tides: Quantitative Analysis Of Water-Leaving Radiance And Perceived Color For Phytoplankton, Colored Dissolved Organic Matter, And Suspended Sediments, Heidi M. Dierssen, Raphael M. Kudela, John P. Ryan, Richard C. Zimmerman

OES Faculty Publications

Using field measurements and quantitative modeling, we demonstrate that red coloration of the sea surface is not associated with any particular group of phytoplankton and is strongly dependent on the physiology of the human visual system. Red or brown surface waters can be produced by high concentrations of most types of algae, colored dissolved organic matter, or suspended sediment. Even though light reflected by red tides commonly peaks in the yellow spectral region (570–580 nm), human color perception requires consideration of the entire spectrum of light relative to receptors within the human eye. The color shift from green to red …


Open-Ocean Carbon Monoxide Photoproduction, Aron Stubbins, Günther Uher, Cliff S. Law, Kenneth Mopper, Carol Robinson, Robert C. Upstill-Goddard Jan 2006

Open-Ocean Carbon Monoxide Photoproduction, Aron Stubbins, Günther Uher, Cliff S. Law, Kenneth Mopper, Carol Robinson, Robert C. Upstill-Goddard

Chemistry & Biochemistry Faculty Publications

Sunlight-initiated photolysis of chromophoric dissolved organic matter (CDOM) is the dominant source of carbon monoxide (CO) in the open-ocean. A modelling study was conducted to constrain this source. Spectral solar irradiance was obtained from two models (GCSOLAR and SMARTS2). Water-column CDOM and total light absorption were modelled using spectra collected along a Meridional transect of the Atlantic ocean using a 200-cm pathlength liquid waveguide UV-visible spectrophotometer. Apparent quantum yields for the production of CO (AQYCO) from CDOM were obtained from a parameterisation describing the relationship between CDOM light absorption coefficient and AQYCO and the CDOM spectra collected. …


Effect Of Humic Substance Photodegradation On Bacterial Growth And Respiration In Lake Water, Alexandre M. Anesio, William Granéli, George R. Aiken, David J. Kieber, Kenneth Mopper Jan 2005

Effect Of Humic Substance Photodegradation On Bacterial Growth And Respiration In Lake Water, Alexandre M. Anesio, William Granéli, George R. Aiken, David J. Kieber, Kenneth Mopper

Chemistry & Biochemistry Faculty Publications

This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-μm pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H2O2 photoproduction. The H2 …


Black Carbon In Estuarine And Coastal Ocean Dissolved Organic Matter, Antonio Mannino, H. Rodger Harvey Jan 2004

Black Carbon In Estuarine And Coastal Ocean Dissolved Organic Matter, Antonio Mannino, H. Rodger Harvey

OES Faculty Publications

We measured black carbon (BC) in ultrafiltered, high-molecular weight dissolved organic matter (UDOM) in surface waters of Delaware Bay, Chesapeake Bay, and the adjacent Atlantic Ocean (U.S.A.) to investigate the importance of riverine and estuarine dissolved organic matter (DOM) as a source of BC to the ocean. BC was 5-72% of UDOM-C (27 ± 17%), which corresponds to 8.9 ± 6.5% of dissolved organic carbon (DOC), with higher values in the heavily urbanized midbay region of the Delaware Estuary and lower yields in the river and coastal ocean. The spatial and seasonal distributions of BC along the salinity gradient of …


An Investigation Of Dissolved Organic Matter In A Shallow Coastal Bay Subject To Aureococcus Anophagefferens Blooms, Jean-Paul Simjouw Jan 2004

An Investigation Of Dissolved Organic Matter In A Shallow Coastal Bay Subject To Aureococcus Anophagefferens Blooms, Jean-Paul Simjouw

OES Theses and Dissertations

Aureococcus anophagefferens, the pelagophyte responsible for brown tide blooms, was identified in Chincoteague Bay in 1997 and has “bloomed” there since at least 1998. Aureococcus anophagefferens is capable of using dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) substrates to support growth, and this utilization is hypothesized to give the organism a competitive advantage relative to other phytoplankton when inorganic nutrient concentrations are low or depleted. Because previous studies suggest dissolved organic matter (DOM) is important in initiating and sustaining brown tide blooms, a field study of the variations in DOC concentration and DOM composition was performed at …


Biochemical Composition Of Particles And Dissolved Organic Matter Slong An Estuarine Gradient: Sources And Implications For Dom Reactivity, Antonio Mannino, H. Rodger Harvey Jan 2000

Biochemical Composition Of Particles And Dissolved Organic Matter Slong An Estuarine Gradient: Sources And Implications For Dom Reactivity, Antonio Mannino, H. Rodger Harvey

OES Faculty Publications

The chemical composition of high molecular weight dissolved organic matter (DOM) and particulate organic matter (POM) was examined along the salinity gradient of the Delaware Estuary. DOM was collected and fractionated by tangential-flow ultrafiltration into 1-30 kDa (HDOM; high molecular weight) and 30 kDa to 0.2 μm (VHDOM; very high molecular weight) and compared to particles collected in parallel. Polysaccharides comprised 12-43% of particulate organic carbon (POC), 30-56% of VHDOM carbon, and 7.5-19% of HDOM carbon. Hydrolyzable amino acids comprised 17-38% of POC, 5.4-12% of VHDOM carbon, and 1.5-4.2% of HDOM carbon. Only 7-43% of dissolved organic nitrogen in VHDOM …