Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Old Dominion University

Electrical & Computer Engineering Faculty Publications

Discipline
Keyword
Publication Year

Articles 1 - 30 of 289

Full-Text Articles in Physical Sciences and Mathematics

Light Auditor: Power Measurement Can Tell Private Data Leakage Through Iot Covert Channels, Woosub Jung, Kailai Cui, Kenneth Koltermann, Junjie Wang, Chunsheng Xin, Gang Zhou Jan 2023

Light Auditor: Power Measurement Can Tell Private Data Leakage Through Iot Covert Channels, Woosub Jung, Kailai Cui, Kenneth Koltermann, Junjie Wang, Chunsheng Xin, Gang Zhou

Electrical & Computer Engineering Faculty Publications

Despite many conveniences of using IoT devices, they have suffered from various attacks due to their weak security. Besides well-known botnet attacks, IoT devices are vulnerable to recent covert-channel attacks. However, no study to date has considered these IoT covert-channel attacks. Among these attacks, researchers have demonstrated exfiltrating users' private data by exploiting the smart bulb's capability of infrared emission.

In this paper, we propose a power-auditing-based system that defends the data exfiltration attack on the smart bulb as a case study. We first implement this infrared-based attack in a lab environment. With a newly-collected power consumption dataset, we pre-process …


Transfer Learning Using Infrared And Optical Full Motion Video Data For Gender Classification, Alexander M. Glandon, Joe Zalameda, Khan M. Iftekharuddin, Gabor F. Fulop (Ed.), David Z. Ting (Ed.), Lucy L. Zheng (Ed.) Jan 2023

Transfer Learning Using Infrared And Optical Full Motion Video Data For Gender Classification, Alexander M. Glandon, Joe Zalameda, Khan M. Iftekharuddin, Gabor F. Fulop (Ed.), David Z. Ting (Ed.), Lucy L. Zheng (Ed.)

Electrical & Computer Engineering Faculty Publications

This work is a review and extension of our ongoing research in human recognition analysis using multimodality motion sensor data. We review our work on hand crafted feature engineering for motion capture skeleton (MoCap) data, from the Air Force Research Lab for human gender followed by depth scan based skeleton extraction using LIDAR data from the Army Night Vision Lab for person identification. We then build on these works to demonstrate a transfer learning sensor fusion approach for using the larger MoCap and smaller LIDAR data for gender classification.


Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer Jan 2023

Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer

Electrical & Computer Engineering Faculty Publications

Microfluidic devices are increasingly utilized in numerous industries, including that of medicine, for their abilities to pump and mix fluid at a microscale. Within these devices, microchannels paired with microelectrodes enable the mixing and transportation of ionized fluid. The ionization process charges the microchannel and manipulates the fluid with an electric field. Although complex in operation at the microscale, microchannels within microfluidic devices are easy to produce and economical. This paper uses simulations to convey helpful insights into the analysis of electrokinetic microfluidic device phenomena. The simulations in this paper use the Navier–Stokes and Poisson Nernst–Planck equations solved using COMSOL …


Quantum Efficiency And Lifetime Study For Negative Electron Affinity Gaas Nanopillar Array Photocathode, Md Aziz Ar Rahman, Md Abdullah Mamun, Shukui Zhang, Hani E. Elsayed-Ali Jan 2023

Quantum Efficiency And Lifetime Study For Negative Electron Affinity Gaas Nanopillar Array Photocathode, Md Aziz Ar Rahman, Md Abdullah Mamun, Shukui Zhang, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Recent studies showed significant improvement in quantum efficiency (QE) by negative electron affinity (NEA) GaAs nanopillar array (NPA) photocathodes over their flat surface peers, particularly at 500 ─ 800 nm waveband. However, the underlying physics is yet to be well understood for further improvement in its performance. In this report, NEA GaAs NPA photocathodes with different dimensions were studied. The diameter of the nanopillars varied from 200 ─ 360 nm, the height varied from 230 ─ 1000 nm and the periodicity varied from 470 ─ 630 nm. The QE and photocathode lifetime were measured. Mie-resonance enhancement was observed at tunable …


Prediction Of Rapid Early Progression And Survival Risk With Pre-Radiation Mri In Who Grade 4 Glioma Patients, Walia Farzana, Mustafa M. Basree, Norou Diawara, Zeina Shboul, Sagel Dubey, Marie M. Lockheart, Mohamed Hamza, Joshua D. Palmer, Khan Iftekharuddin Jan 2023

Prediction Of Rapid Early Progression And Survival Risk With Pre-Radiation Mri In Who Grade 4 Glioma Patients, Walia Farzana, Mustafa M. Basree, Norou Diawara, Zeina Shboul, Sagel Dubey, Marie M. Lockheart, Mohamed Hamza, Joshua D. Palmer, Khan Iftekharuddin

Electrical & Computer Engineering Faculty Publications

Rapid early progression (REP) has been defined as increased nodular enhancement at the border of the resection cavity, the appearance of new lesions outside the resection cavity, or increased enhancement of the residual disease after surgery and before radiation. Patients with REP have worse survival compared to patients without REP (non-REP). Therefore, a reliable method for differentiating REP from non-REP is hypothesized to assist in personlized treatment planning. A potential approach is to use the radiomics and fractal texture features extracted from brain tumors to characterize morphological and physiological properties. We propose a random sampling-based ensemble classification model. The proposed …


A Review Of Iot Security And Privacy Using Decentralized Blockchain Techniques, Vinay Gugueoth, Sunitha Safavat, Sachin Shetty, Danda Rawat Jan 2023

A Review Of Iot Security And Privacy Using Decentralized Blockchain Techniques, Vinay Gugueoth, Sunitha Safavat, Sachin Shetty, Danda Rawat

Electrical & Computer Engineering Faculty Publications

IoT security is one of the prominent issues that has gained significant attention among the researchers in recent times. The recent advancements in IoT introduces various critical security issues and increases the risk of privacy leakage of IoT data. Implementation of Blockchain can be a potential solution for the security issues in IoT. This review deeply investigates the security threats and issues in IoT which deteriorates the effectiveness of IoT systems. This paper presents a perceptible description of the security threats, Blockchain based solutions, security characteristics and challenges introduced during the integration of Blockchain with IoT. An analysis of different …


Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette Jan 2023

Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette

Electrical & Computer Engineering Faculty Publications

Real-time fall detection using a wearable sensor remains a challenging problem due to high gait variability. Furthermore, finding the type of sensor to use and the optimal location of the sensors are also essential factors for real-time fall-detection systems. This work presents real-time fall-detection methods using deep learning models. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. First, we developed and compared different data-segmentation techniques for sliding windows. Next, we implemented various techniques to balance the datasets because collecting fall datasets in the real-time setting has …


Mwirgan: Unsupervised Visible-To Mwir Image Translation With Generative Adversarial Network, Mohammad Shahab Uddin, Chiman Kwan, Jiang Li Jan 2023

Mwirgan: Unsupervised Visible-To Mwir Image Translation With Generative Adversarial Network, Mohammad Shahab Uddin, Chiman Kwan, Jiang Li

Electrical & Computer Engineering Faculty Publications

Unsupervised image-to-image translation techniques have been used in many applications, including visible-to-Long-Wave Infrared (visible-to-LWIR) image translation, but very few papers have explored visible-to-Mid-Wave Infrared (visible-to-MWIR) image translation. In this paper, we investigated unsupervised visible-to-MWIR image translation using generative adversarial networks (GANs). We proposed a new model named MWIRGAN for visible-to-MWIR image translation in a fully unsupervised manner. We utilized a perceptual loss to leverage shape identification and location changes of the objects in the translation. The experimental results showed that MWIRGAN was capable of visible-to-MWIR image translation while preserving the object’s shape with proper enhancement in the translated images and …


Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter Jan 2023

Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter

Electrical & Computer Engineering Faculty Publications

Refractive index (RI) sensors are of great interest for label-free optical biosensing. A tapered optical fiber (TOF) RI sensor with micron-sized waist diameters can dramatically enhance sensor sensitivity by reducing the mode volume over a long distance. Here, a simple and fast method is used to fabricate highly sensitive refractive index sensors based on localized surface plasmon resonance (LSPR). Two TOFs (l = 5 mm) with waist diameters of 5 µm and 12 µm demonstrated sensitivity enhancement at λ = 1559 nm for glucose sensing (5-45 wt%) at room temperature. The optical power transmission decreased with increasing glucose concentration due …


The Effect Of The Width Of The Incident Pulse To The Dielectric Transition Layer In The Scattering Of An Electromagnetic Pulse — A Qubit Lattice Algorithm Simulation, George Vahala, Linda Vahala, Abhay K. Ram, Min Soe Jan 2023

The Effect Of The Width Of The Incident Pulse To The Dielectric Transition Layer In The Scattering Of An Electromagnetic Pulse — A Qubit Lattice Algorithm Simulation, George Vahala, Linda Vahala, Abhay K. Ram, Min Soe

Electrical & Computer Engineering Faculty Publications

The effect of the thickness of the dielectric boundary layer that connects a material of refractive index n1 to another of index n2is considered for the propagation of an electromagnetic pulse. A qubit lattice algorithm (QLA), which consists of a specially chosen non-commuting sequence of collision and streaming operators acting on a basis set of qubits, is theoretically determined that recovers the Maxwell equations to second-order in a small parameter ϵ. For very thin boundary layer the scattering properties of the pulse mimics that found from the Fresnel jump conditions for a plane wave - except that …


View Synthesis With Scene Recognition For Cross-View Image Localization, Uddom Lee, Peng Jiang, Hongyi Wu, Chunsheng Xin Jan 2023

View Synthesis With Scene Recognition For Cross-View Image Localization, Uddom Lee, Peng Jiang, Hongyi Wu, Chunsheng Xin

Electrical & Computer Engineering Faculty Publications

Image-based localization has been widely used for autonomous vehicles, robotics, augmented reality, etc., and this is carried out by matching a query image taken from a cell phone or vehicle dashcam to a large scale of geo-tagged reference images, such as satellite/aerial images or Google Street Views. However, the problem remains challenging due to the inconsistency between the query images and the large-scale reference datasets regarding various light and weather conditions. To tackle this issue, this work proposes a novel view synthesis framework equipped with deep generative models, which can merge the unique features from the outdated reference dataset with …


Security Of Internet Of Things (Iot) Using Federated Learning And Deep Learning — Recent Advancements, Issues And Prospects, Vinay Gugueoth, Sunitha Safavat, Sachin Shetty Jan 2023

Security Of Internet Of Things (Iot) Using Federated Learning And Deep Learning — Recent Advancements, Issues And Prospects, Vinay Gugueoth, Sunitha Safavat, Sachin Shetty

Electrical & Computer Engineering Faculty Publications

There is a great demand for an efficient security framework which can secure IoT systems from potential adversarial attacks. However, it is challenging to design a suitable security model for IoT considering the dynamic and distributed nature of IoT. This motivates the researchers to focus more on investigating the role of machine learning (ML) in the designing of security models. A brief analysis of different ML algorithms for IoT security is discussed along with the advantages and limitations of ML algorithms. Existing studies state that ML algorithms suffer from the problem of high computational overhead and risk of privacy leakage. …


Adaptive Critic Network For Person Tracking Using 3d Skeleton Data, Joseph G. Zalameda, Alex Glandon, Khan M. Iftekharuddin, Mohammad S. Alam (Ed.), Vijayan K. Asari (Ed.) Jan 2023

Adaptive Critic Network For Person Tracking Using 3d Skeleton Data, Joseph G. Zalameda, Alex Glandon, Khan M. Iftekharuddin, Mohammad S. Alam (Ed.), Vijayan K. Asari (Ed.)

Electrical & Computer Engineering Faculty Publications

Analysis of human gait using 3-dimensional co-occurrence skeleton joints extracted from Lidar sensor data has been shown a viable method for predicting person identity. The co-occurrence based networks rely on the spatial changes between frames of each joint in the skeleton data sequence. Normally, this data is obtained using a Lidar skeleton extraction method to estimate these co-occurrence features from raw Lidar frames, which can be prone to incorrect joint estimations when part of the body is occluded. These datasets can also be time consuming and expensive to collect and typically offer a small number of samples for training and …


Class Activation Mapping And Uncertainty Estimation In Multi-Organ Segmentation, Md. Shibly Sadique, Walia Farzana, Ahmed Temtam, Khan Iftekharuddin, Khan Iftekharuddin (Ed.), Weijie Chen (Ed.) Jan 2023

Class Activation Mapping And Uncertainty Estimation In Multi-Organ Segmentation, Md. Shibly Sadique, Walia Farzana, Ahmed Temtam, Khan Iftekharuddin, Khan Iftekharuddin (Ed.), Weijie Chen (Ed.)

Electrical & Computer Engineering Faculty Publications

Deep learning (DL)-based medical imaging and image segmentation algorithms achieve impressive performance on many benchmarks. Yet the efficacy of deep learning methods for future clinical applications may become questionable due to the lack of ability to reason with uncertainty and interpret probable areas of failures in prediction decisions. Therefore, it is desired that such a deep learning model for segmentation classification is able to reliably predict its confidence measure and map back to the original imaging cases to interpret the prediction decisions. In this work, uncertainty estimation for multiorgan segmentation task is evaluated to interpret the predictive modeling in DL …


Deep-Learning-Based Classification Of Digitally Modulated Signals Using Capsule Networks And Cyclic Cumulants, John A. Snoap, Dimitrie C. Popescu, James A. Latshaw, Chad M. Spooner Jan 2023

Deep-Learning-Based Classification Of Digitally Modulated Signals Using Capsule Networks And Cyclic Cumulants, John A. Snoap, Dimitrie C. Popescu, James A. Latshaw, Chad M. Spooner

Electrical & Computer Engineering Faculty Publications

This paper presents a novel deep-learning (DL)-based approach for classifying digitally modulated signals, which involves the use of capsule networks (CAPs) together with the cyclic cumulant (CC) features of the signals. These were blindly estimated using cyclostationary signal processing (CSP) and were then input into the CAP for training and classification. The classification performance and the generalization abilities of the proposed approach were tested using two distinct datasets that contained the same types of digitally modulated signals, but had distinct generation parameters. The results showed that the classification of digitally modulated signals using CAPs and CCs proposed in the paper …


Ict Security Tools And Techniques Among Higher Education Institutions: A Critical Review, Miko Nuñez, Xavier-Lewis Palmer, Lucas Potter, Chris Jordan Aliac, Lemuel Clark Velasco Jan 2023

Ict Security Tools And Techniques Among Higher Education Institutions: A Critical Review, Miko Nuñez, Xavier-Lewis Palmer, Lucas Potter, Chris Jordan Aliac, Lemuel Clark Velasco

Electrical & Computer Engineering Faculty Publications

Higher education institutions (HEIs) are increasingly relying on digital technologies for classroom and organizational management, but this puts them at higher risk for information and communication (ICT security attacks. Recent studies show that HEIs have experienced more security breaches in ICT security composed of both cybersecurity an information security. A literature review was conducted to identify common ICT security practices in HEIs over the last decade. 11 journal articles were profiled and analyzed, revealing threats to HEIs’ security and protective measures in terms of organizational security, technological security, physical security, and standards and frameworks. Security tools and techniques were grouped …


Comparison Of Machine Learning Methods For Classification Of Alexithymia In Individuals With And Without Autism From Eye-Tracking Data, Furkan Iigin, Megan A. Witherow, Khan M. Iftekharuddin Jan 2023

Comparison Of Machine Learning Methods For Classification Of Alexithymia In Individuals With And Without Autism From Eye-Tracking Data, Furkan Iigin, Megan A. Witherow, Khan M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

Alexithymia describes a psychological state where individuals struggle with feeling and expressing their emotions. Individuals with alexithymia may also have a more difficult time understanding the emotions of others and may express atypical attention to the eyes when recognizing emotions. This is known to affect individuals with Autism Spectrum Disorder (ASD) differently than neurotypical (NT) individuals. Using a public data set of eye-tracking data from seventy individuals with and without autism who have been assessed for alexithymia, we train multiple traditional machine learning models for alexithymia classification including support vector machines, logistic regression, decision trees, random forest, and multilayer perceptron. …


Special Section Editorial: Artificial Intelligence For Medical Imaging In Clinical Practice, Claudia Mello-Thoms, Karen Drukker, Sian Taylor-Phillips, Khan Iftekharuddin, Marios Gavrielides Jan 2023

Special Section Editorial: Artificial Intelligence For Medical Imaging In Clinical Practice, Claudia Mello-Thoms, Karen Drukker, Sian Taylor-Phillips, Khan Iftekharuddin, Marios Gavrielides

Electrical & Computer Engineering Faculty Publications

This editorial introduces the JMI Special Section on Artificial Intelligence for Medical Imaging in Clinical Practice.


An Explainable Artificial Intelligence Framework For The Predictive Analysis Of Hypo And Hyper Thyroidism Using Machine Learning Algorithms, Md. Bipul Hossain, Anika Shama, Apurba Adhikary, Avi Deb Raha, K. M. Aslam Uddin, Mohammad Amzad Hossain, Imtia Islam, Saydul Akbar Murad, Md. Shirajum Munir, Anupam Kumur Bairagi Jan 2023

An Explainable Artificial Intelligence Framework For The Predictive Analysis Of Hypo And Hyper Thyroidism Using Machine Learning Algorithms, Md. Bipul Hossain, Anika Shama, Apurba Adhikary, Avi Deb Raha, K. M. Aslam Uddin, Mohammad Amzad Hossain, Imtia Islam, Saydul Akbar Murad, Md. Shirajum Munir, Anupam Kumur Bairagi

Electrical & Computer Engineering Faculty Publications

The thyroid gland is the crucial organ in the human body, secreting two hormones that help to regulate the human body's metabolism. Thyroid disease is a severe medical complaint that could be developed by high Thyroid Stimulating Hormone (TSH) levels or an infection in the thyroid tissues. Hypothyroidism and hyperthyroidism are two critical conditions caused by insufficient thyroid hormone production and excessive thyroid hormone production, respectively. Machine learning models can be used to precisely process the data generated from different medical sectors and to build a model to predict several diseases. In this paper, we use different machine-learning algorithms to …


A Survey Of Using Machine Learning In Iot Security And The Challenges Faced By Researchers, Khawlah M. Harahsheh, Chung-Hao Chen Jan 2023

A Survey Of Using Machine Learning In Iot Security And The Challenges Faced By Researchers, Khawlah M. Harahsheh, Chung-Hao Chen

Electrical & Computer Engineering Faculty Publications

The Internet of Things (IoT) has become more popular in the last 15 years as it has significantly improved and gained control in multiple fields. We are nowadays surrounded by billions of IoT devices that directly integrate with our lives, some of them are at the center of our homes, and others control sensitive data such as military fields, healthcare, and datacenters, among others. This popularity makes factories and companies compete to produce and develop many types of those devices without caring about how secure they are. On the other hand, IoT is considered a good insecure environment for cyber …


Electron Beam Treatment For The Removal Of 1,4-Dioxane In Water And Wastewater, Robert Pearce, Xi Li, John Vennekate, Gianluigi Ciovati, Charles Bott Jan 2023

Electron Beam Treatment For The Removal Of 1,4-Dioxane In Water And Wastewater, Robert Pearce, Xi Li, John Vennekate, Gianluigi Ciovati, Charles Bott

Electrical & Computer Engineering Faculty Publications

Electron beam (e-beam) treatment uses accelerated electrons to form oxidizing and reducing radicals when applied to water without the use of external chemicals. In this study, electron beam treatment was used to degrade 1,4-dioxane in several water matrices. Removal improved in the progressively cleaner water matrices and removals as high as 94% to 99% were observed at a dose of 2.3 kGy in secondary effluent. 1,4-dioxane removal was confirmed to be primarily through hydroxyl radical oxidation. The calculated electrical energy per order was found to be 0.53, 0.26, and 0.08 kWh/m3/order for secondary effluent (Avg. total organic carbon …


Elevation-Distributed Multistage Reverse Osmosis Desalination With Seawater Pumped Storage, Hani E. Elsayed-Ali Jan 2023

Elevation-Distributed Multistage Reverse Osmosis Desalination With Seawater Pumped Storage, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

A seawater reverse osmosis (RO) plant layout based on multistage RO with stages located at different elevations above sea level is described. The plant uses the weight of a seawater column from pumped storage as head pressure for RO (gravity-driven multistage RO) or to supplement high-pressure pumps used in RO (gravity-assisted multistage RO). The use of gravitational force reduces the specific energy for RO compared to using high-pressure pumps. By locating the RO stages at different elevations based on demand sites, the total specific energy consumption for RO and permeate transport to different elevations above sea level is reduced from …


Opioid Use Disorder Prediction Using Machine Learning Of Fmri Data, A. Temtam, Liangsuo Ma, F. Gerard Moeller, M. S. Sadique, K. M. Iftekharuddin, Khan M. Iftekharuddin (Ed.), Weijie Chen (Ed.) Jan 2023

Opioid Use Disorder Prediction Using Machine Learning Of Fmri Data, A. Temtam, Liangsuo Ma, F. Gerard Moeller, M. S. Sadique, K. M. Iftekharuddin, Khan M. Iftekharuddin (Ed.), Weijie Chen (Ed.)

Electrical & Computer Engineering Faculty Publications

According to the Centers for Disease Control and Prevention (CDC) more than 932,000 people in the US have died since 1999 from a drug overdose. Just about 75% of drug overdose deaths in 2020 involved Opioid, which suggests that the US is in an Opioid overdose epidemic. Identifying individuals likely to develop Opioid use disorder (OUD) can help public health in planning effective prevention, intervention, drug overdose and recovery policies. Further, a better understanding of prediction of overdose leading to the neurobiology of OUD may lead to new therapeutics. In recent years, very limited work has been done using statistical …


Runtime Energy Savings Based On Machine Learning Models For Multicore Applications, Vaibhav Sundriyal, Masha Sosonkina Jun 2022

Runtime Energy Savings Based On Machine Learning Models For Multicore Applications, Vaibhav Sundriyal, Masha Sosonkina

Electrical & Computer Engineering Faculty Publications

To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to maximize energy savings under a given performance degradation. Machine learning techniques were utilized to develop performance models which would provide accurate performance prediction with change in operating core-uncore frequency. Experiments, performed on a node (28 cores) of a modern computing platform showed significant energy savings of as much as 26% with performance degradation of as low as 5% under the proposed strategy compared with the execution in the unlimited power case.


Foundations Of Plasmas For Medical Applications, T. Von Woedtke, Mounir Laroussi, M. Gherardi May 2022

Foundations Of Plasmas For Medical Applications, T. Von Woedtke, Mounir Laroussi, M. Gherardi

Electrical & Computer Engineering Faculty Publications

Plasma medicine refers to the application of nonequilibrium plasmas at approximately body temperature, for therapeutic purposes. Nonequilibrium plasmas are weakly ionized gases which contain charged and neutral species and electric fields, and emit radiation, particularly in the visible and ultraviolet range. Medically-relevant cold atmospheric pressure plasma (CAP) sources and devices are usually dielectric barrier discharges and nonequilibrium atmospheric pressure plasma jets. Plasma diagnostic methods and modelling approaches are used to characterize the densities and fluxes of active plasma species and their interaction with surrounding matter. In addition to the direct application of plasma onto living tissue, the treatment of liquids …


Understanding The Mechanism Of Deep Learning Frameworks In Lesion Detection For Pathological Images With Breast Cancer, Wei-Wen Hsu, Chung-Hao Chen, Chang Hao, Yu-Ling Hou, Xiang Gao, Yun Shao, Xueli Zhang, Jingjing Wang, Tao He, Yanhong Tai Apr 2022

Understanding The Mechanism Of Deep Learning Frameworks In Lesion Detection For Pathological Images With Breast Cancer, Wei-Wen Hsu, Chung-Hao Chen, Chang Hao, Yu-Ling Hou, Xiang Gao, Yun Shao, Xueli Zhang, Jingjing Wang, Tao He, Yanhong Tai

Electrical & Computer Engineering Faculty Publications

With the advances of scanning sensors and deep learning algorithms, computational pathology has drawn much attention in recent years and started to play an important role in the clinical workflow. Computer-aided detection (CADe) systems have been developed to assist pathologists in slide assessment, increasing diagnosis efficiency and reducing misdetections. In this study, we conducted four experiments to demonstrate that the features learned by deep learning models are interpretable from a pathological perspective. In addition, classifiers such as the support vector machine (SVM) and random forests (RF) were used in experiments to replace the fully connected layers and decompose the end-to-end …


Deeppose: Detecting Gps Spoofing Attack Via Deep Recurrent Neural Network, Peng Jiang, Hongyi Wu, Chunsheng Xin Jan 2022

Deeppose: Detecting Gps Spoofing Attack Via Deep Recurrent Neural Network, Peng Jiang, Hongyi Wu, Chunsheng Xin

Electrical & Computer Engineering Faculty Publications

The Global Positioning System (GPS) has become a foundation for most location-based services and navigation systems, such as autonomous vehicles, drones, ships, and wearable devices. However, it is a challenge to verify if the reported geographic locations are valid due to various GPS spoofing tools. Pervasive tools, such as Fake GPS, Lockito, and software-defined radio, enable ordinary users to hijack and report fake GPS coordinates and cheat the monitoring server without being detected. Furthermore, it is also a challenge to get accurate sensor readings on mobile devices because of the high noise level introduced by commercial motion sensors. To this …


Bitcoin Selfish Mining Modeling And Dependability Analysis, Chencheng Zhou, Liudong Xing, Jun Guo, Qisi Liu Jan 2022

Bitcoin Selfish Mining Modeling And Dependability Analysis, Chencheng Zhou, Liudong Xing, Jun Guo, Qisi Liu

Electrical & Computer Engineering Faculty Publications

Blockchain technology has gained prominence over the last decade. Numerous achievements have been made regarding how this technology can be utilized in different aspects of the industry, market, and governmental departments. Due to the safety-critical and security-critical nature of their uses, it is pivotal to model the dependability of blockchain-based systems. In this study, we focus on Bitcoin, a blockchain-based peer-to-peer cryptocurrency system. A continuous-time Markov chain-based analytical method is put forward to model and quantify the dependability of the Bitcoin system under selfish mining attacks. Numerical results are provided to examine the influences of several key parameters related to …


Spectrum Sensing With Energy Detection In Multiple Alternating Time Slots, Călin Vlădeanu, Alexandru Marţian, Dimitrie C. Popescu Jan 2022

Spectrum Sensing With Energy Detection In Multiple Alternating Time Slots, Călin Vlădeanu, Alexandru Marţian, Dimitrie C. Popescu

Electrical & Computer Engineering Faculty Publications

Energy detection (ED) represents a low complexity approach used by secondary users (SU) to sense spectrum occupancy by primary users (PU) in cognitive radio (CR) systems. In this paper, we present a new algorithm that senses the spectrum occupancy by performing ED in K consecutive sensing time slots starting from the current slot and continuing by alternating before and after the current slot. We consider a PU traffic model specified in terms of an average duty cycle value, and derive analytical expressions for the false alarm probability (FAP) and correct detection probability (CDP) for any value of K . Our …


Real-Time Cavity Fault Prediction In Cebaf Using Deep Learning, Md. M. Rahman, K. Iftekharuddin, A. Carptenter, T. Mcguckin, C. Tennant, L. Vidyaratne, Sandra Biedron (Ed.), Evgenya Simakov (Ed.), Stephen Milton (Ed.), Petr M. Anisimov (Ed.), Volker R.W. Schaa (Ed.) Jan 2022

Real-Time Cavity Fault Prediction In Cebaf Using Deep Learning, Md. M. Rahman, K. Iftekharuddin, A. Carptenter, T. Mcguckin, C. Tennant, L. Vidyaratne, Sandra Biedron (Ed.), Evgenya Simakov (Ed.), Stephen Milton (Ed.), Petr M. Anisimov (Ed.), Volker R.W. Schaa (Ed.)

Electrical & Computer Engineering Faculty Publications

Data-driven prediction of future faults is a major research area for many industrial applications. In this work, we present a new procedure of real-time fault prediction for superconducting radio-frequency (SRF) cavities at the Continuous Electron Beam Accelerator Facility (CEBAF) using deep learning. CEBAF has been afflicted by frequent downtime caused by SRF cavity faults. We perform fault prediction using pre-fault RF signals from C100-type cryomodules. Using the pre-fault signal information, the new algorithm predicts the type of cavity fault before the actual onset. The early prediction may enable potential mitigation strategies to prevent the fault. In our work, we apply …