Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 122

Full-Text Articles in Physical Sciences and Mathematics

Continual Online Learning-Based Optimal Tracking Control Of Nonlinear Strict-Feedback Systems: Application To Unmanned Aerial Vehicles, Irfan Ganie, Sarangapani Jagannathan Mar 2024

Continual Online Learning-Based Optimal Tracking Control Of Nonlinear Strict-Feedback Systems: Application To Unmanned Aerial Vehicles, Irfan Ganie, Sarangapani Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

A novel optimal trajectory tracking scheme is introduced for nonlinear continuous-time systems in strict feedback form with uncertain dynamics by using neural networks (NNs). The method employs an actor-critic-based NN back-stepping technique for minimizing a discounted value function along with an identifier to approximate unknown system dynamics that are expressed in augmented form. Novel online weight update laws for the actor and critic NNs are derived by using both the NN identifier and Hamilton-Jacobi-Bellman residual error. A new continual lifelong learning technique utilizing the Fisher Information Matrix via Hamilton-Jacobi-Bellman residual error is introduced to obtain the significance of weights in …


Meta-Icvi: Ensemble Validity Metrics For Concise Labeling Of Correct, Under- Or Over-Partitioning In Streaming Clustering, Niklas M. Melton, Sasha A. Petrenko, Donald C. Wunsch Jan 2024

Meta-Icvi: Ensemble Validity Metrics For Concise Labeling Of Correct, Under- Or Over-Partitioning In Streaming Clustering, Niklas M. Melton, Sasha A. Petrenko, Donald C. Wunsch

Electrical and Computer Engineering Faculty Research & Creative Works

Understanding the performance and validity of clustering algorithms is both challenging and crucial, particularly when clustering must be done online. Until recently, most validation methods have relied on batch calculation and have required considerable human expertise in their interpretation. Improving real-time performance and interpretability of cluster validation, therefore, continues to be an important theme in unsupervised learning. Building upon previous work on incremental cluster validity indices (iCVIs), this paper introduces the Meta- iCVI as a tool for explainable and concise labeling of partition quality in online clustering. Leveraging a time-series classifier and data-fusion techniques, the Meta- iCVI combines the outputs …


Adaptive Resilient Control For A Class Of Nonlinear Distributed Parameter Systems With Actuator Faults, Hasan Ferdowsi, Jia Cai, Sarangapani Jagannathan Jan 2024

Adaptive Resilient Control For A Class Of Nonlinear Distributed Parameter Systems With Actuator Faults, Hasan Ferdowsi, Jia Cai, Sarangapani Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents a new model-based fault resilient control scheme for a class of nonlinear distributed parameter systems (DPS) represented by parabolic partial differential equations (PDE) in the presence of actuator faults. A Luenberger-like observer on the basis of nonlinear PDE representation of DPS is developed with boundary measurements. A detection residual is generated by taking the difference between the measured output of the DPS and the estimated one given by the observer. Once a fault is detected, an unknown actuator fault parameter vector together with a known basis function is utilized to adaptively estimate the fault dynamics. A novel …


Qc-Sane: Robust Control In Drl Using Quantile Critic With Spiking Actor And Normalized Ensemble, Surbhi Gupta, Gaurav Singal, Deepak Garg, Sarangapani Jagannathan Sep 2023

Qc-Sane: Robust Control In Drl Using Quantile Critic With Spiking Actor And Normalized Ensemble, Surbhi Gupta, Gaurav Singal, Deepak Garg, Sarangapani Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

Recently Introduced Deep Reinforcement Learning (DRL) Techniques in Discrete-Time Have Resulted in Significant Advances in Online Games, Robotics, and So On. Inspired from Recent Developments, We Have Proposed an Approach Referred to as Quantile Critic with Spiking Actor and Normalized Ensemble (QC-SANE) for Continuous Control Problems, Which Uses Quantile Loss to Train Critic and a Spiking Neural Network (NN) to Train an Ensemble of Actors. the NN Does an Internal Normalization using a Scaled Exponential Linear Unit (SELU) Activation Function and Ensures Robustness. the Empirical Study on Multijoint Dynamics with Contact (MuJoCo)-Based Environments Shows Improved Training and Test Results Than …


Lifelong Learning-Based Multilayer Neural Network Control Of Nonlinear Continuous-Time Strict-Feedback Systems, Irfan Ahmad Ganie, S. (Sarangapani) Jagannathan Jan 2023

Lifelong Learning-Based Multilayer Neural Network Control Of Nonlinear Continuous-Time Strict-Feedback Systems, Irfan Ahmad Ganie, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

In This Paper, We Investigate Lifelong Learning (LL)-Based Tracking Control for Partially Uncertain Strict Feedback Nonlinear Systems with State Constraints, employing a Singular Value Decomposition (SVD) of the Multilayer Neural Networks (MNNs) Activation Function based Weight Tuning Scheme. the Novel SVD-Based Approach Extends the MNN Weight Tuning to (Formula Presented.) Layers. a Unique Online LL Method, based on Tracking Error, is Integrated into the MNN Weight Update Laws to Counteract Catastrophic Forgetting. to Adeptly Address Constraints for Safety Assurances, Taking into Account the Effects Caused by Disturbances, We Utilize a Time-Varying Barrier Lyapunov Function (TBLF) that Ensures a Uniformly Ultimately …


Improved Intelligent Ledger Construction For Realistic Iot Blockchain Networks, Charles Rawlins, S. (Sarangapani) Jagannathan Jan 2023

Improved Intelligent Ledger Construction For Realistic Iot Blockchain Networks, Charles Rawlins, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

Scalability is essential for next generation blockchain technology to integrate with large mobile networks like Internet of Things (IoT). The IOTA distributed ledger protocol has combined transaction generation and verification to address this, but at the expense of increased reliance on connectivity to resolve conflicts with a novel ledger data structure. Intelligent Ledger Construction (ILC) was proposed as an auditable lightweight reinforcement-learning scheme to address this constraint with proposal of local conflict resolution with machine-learning classification. This effort presents an improved reliability reward model to enhance training for ILC and further reduce adversarial gaming and resource usage. Testing this revision …


Continual Optimal Adaptive Tracking Of Uncertain Nonlinear Continuous-Time Systems Using Multilayer Neural Networks, Irfan Ganie, S. (Sarangapani) Jagannathan Jan 2023

Continual Optimal Adaptive Tracking Of Uncertain Nonlinear Continuous-Time Systems Using Multilayer Neural Networks, Irfan Ganie, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This study provides a lifelong integral reinforcement learning (LIRL)-based optimal tracking scheme for uncertain nonlinear continuous-time (CT) systems using multilayer neural network (MNN). In this LIRL framework, the optimal control policies are generated by using both the critic neural network (NN) weights and single-layer NN identifier. The critic MNN weight tuning is accomplished using an improved singular value decomposition (SVD) of its activation function gradient. The NN identifier, on the other hand, provides the control coefficient matrix for computing the control policies. An online weight velocity attenuation (WVA)-based consolidation scheme is proposed wherein the significance of weights is derived by …


Optimal Tracking Of Nonlinear Discrete-Time Systems Using Zero-Sum Game Formulation And Hybrid Learning, Behzad Farzanegan, S. (Sarangapani) Jagannathan Jan 2023

Optimal Tracking Of Nonlinear Discrete-Time Systems Using Zero-Sum Game Formulation And Hybrid Learning, Behzad Farzanegan, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents a novel hybrid learning-based optimal tracking method to address zero-sum game problems for partially uncertain nonlinear discrete-time systems. An augmented system and its associated discounted cost function are defined to address optimal tracking. Three multi-layer neural networks (NNs) are utilized to approximate the optimal control and the worst-case disturbance inputs, and the value function. The critic weights are tuned using the hybrid technique, whose weights are updated once at the sampling instants and in an iterative manner over finite times within the sampling instants. The proposed hybrid technique helps accelerate the convergence of the approximated value functional …


Rafid: A Lightweight Approach To Radio Frequency Interference Detection In Time Domain Using Lstm And Statistical Analysis, Luke A. Smith, Vishesh Kumar Tanwar, Maciej Jan Zawodniok, Sanjay Kumar Madria Jan 2023

Rafid: A Lightweight Approach To Radio Frequency Interference Detection In Time Domain Using Lstm And Statistical Analysis, Luke A. Smith, Vishesh Kumar Tanwar, Maciej Jan Zawodniok, Sanjay Kumar Madria

Electrical and Computer Engineering Faculty Research & Creative Works

Recently, the utilization of Radio Frequency (RF) devices has increased exponentially over numerous vertical platforms. This rise has led to an abundance of Radio Frequency Interference (RFI) continues to plague RF systems today. The continued crowding of the RF spectrum makes RFI efficient and lightweight mitigation critical. Detecting and localizing the interfering signals is the foremost step for mitigating RFI concerns. Addressing these challenges, we propose a novel and lightweight approach, namely RaFID, to detect and locate the RFI by incorporating deep neural networks (DNNs) and statistical analysis via batch-wise mean aggregation and standard deviation (SD) calculations. RaFID investigates the …


Lifelong Deep Learning-Based Control Of Robot Manipulators, Irfan Ganie, Jagannathan Sarangapani Jan 2023

Lifelong Deep Learning-Based Control Of Robot Manipulators, Irfan Ganie, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

This study proposes a lifelong deep learning control scheme for robotic manipulators with bounded disturbances. This scheme involves the use of an online tunable deep neural network (DNN) to approximate the unknown nonlinear dynamics of the robot. The control scheme is developed by using a singular value decomposition-based direct tracking error-driven approach, which is utilized to derive the weight update laws for the DNN. To avoid catastrophic forgetting in multi-task scenarios and to ensure lifelong learning (LL), a novel online LL scheme based on elastic weight consolidation is included in the DNN weight-tuning laws. Our results demonstrate that the resulting …


Lifelong Learning Control Of Nonlinear Systems With Constraints Using Multilayer Neural Networks With Application To Mobile Robot Tracking, Irfan Ganie, S. (Sarangapani) Jagannathan Jan 2023

Lifelong Learning Control Of Nonlinear Systems With Constraints Using Multilayer Neural Networks With Application To Mobile Robot Tracking, Irfan Ganie, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This Paper Presents a Novel Lifelong Multilayer Neural Network (MNN) Tracking Approach for an Uncertain Nonlinear Continuous-Time Strict Feedback System that is Subject to Time-Varying State Constraints. the Proposed Method Uses a Time-Varying Barrier Function to Accommodate the Constraints Leading to the Development of an Efficient Control Scheme. the Unknown Dynamics Are Approximated using a MNN, with Weights Tuned using a Singular Value Decomposition (SVD)-Based Technique. an Online Lifelong Learning (LL) based Elastic Weight Consolidation (EWC) Scheme is Also Incorporated to Alleviate the Issue of Catastrophic Forgetting. the Stability of the overall Closed-Loop System is Analyzed using Lyapunov Analysis. the …


Towards Robust Consensus For Intelligent Decision-Making In Iot Blockchain Networks, Charles Rawlins, S. (Sarangapani) Jagannathan Jan 2023

Towards Robust Consensus For Intelligent Decision-Making In Iot Blockchain Networks, Charles Rawlins, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

Distributed consensus is the core aspect of blockchain protocol security design. Recent protocols like IOTA have improved concurrency and scalability over Proof-of-work (PoW) with Bitcoin but have core design decisions that are inefficient for limited devices and do not take advantage of previous network experience to reduce calculations. This work proposes the first blockchain consensus protocol based on active machine-learning decisions, called Proof-of-history (PoH). PoH is setup as a distributed reinforcement-learning task for monitoring classification and training of blockchain transactions with an inner deep classifier. Early theoretical analysis and simulations show that PoH is robust to uncoordinated byzantine attacks through …


Skin Lesion Segmentation In Dermoscopic Images With Noisy Data, Norsang Lama, Jason Hagerty, Anand Nambisan, Ronald Joe Stanley, William Van Stoecker Jan 2023

Skin Lesion Segmentation In Dermoscopic Images With Noisy Data, Norsang Lama, Jason Hagerty, Anand Nambisan, Ronald Joe Stanley, William Van Stoecker

Electrical and Computer Engineering Faculty Research & Creative Works

We Propose a Deep Learning Approach to Segment the Skin Lesion in Dermoscopic Images. the Proposed Network Architecture Uses a Pretrained Efficient Net Model in the Encoder and Squeeze-And-Excitation Residual Structures in the Decoder. We Applied This Approach on the Publicly Available International Skin Imaging Collaboration (ISIC) 2017 Challenge Skin Lesion Segmentation Dataset. This Benchmark Dataset Has Been Widely Used in Previous Studies. We Observed Many Inaccurate or Noisy Ground Truth Labels. to Reduce Noisy Data, We Manually Sorted All Ground Truth Labels into Three Categories — Good, Mildly Noisy, and Noisy Labels. Furthermore, We Investigated the Effect of Such …


Personalizing Student Graduation Paths Using Expressed Student Interests, Nicolas Dobbins, Ali R. Hurson, Sahra Sedigh Jan 2023

Personalizing Student Graduation Paths Using Expressed Student Interests, Nicolas Dobbins, Ali R. Hurson, Sahra Sedigh

Electrical and Computer Engineering Faculty Research & Creative Works

This paper proposes an intelligent recommendation approach to facilitate personalized education and help students in planning their path to graduation. The goal is to identify a path that aligns with a student's interests and career goals and approaches optimality with respect to one or more criteria, such as time-to-graduation or credit hours taken. The approach is illustrated and verified through application to undergraduate curricula at the Missouri University of Science and Technology.


Optimal Adaptive Tracking Control Of Partially Uncertain Nonlinear Discrete-Time Systems Using Lifelong Hybrid Learning, Behzad Farzanegan, Rohollah Moghadam, Sarangapani Jagannathan, Pappa Natarajan Jan 2023

Optimal Adaptive Tracking Control Of Partially Uncertain Nonlinear Discrete-Time Systems Using Lifelong Hybrid Learning, Behzad Farzanegan, Rohollah Moghadam, Sarangapani Jagannathan, Pappa Natarajan

Electrical and Computer Engineering Faculty Research & Creative Works

This article addresses a multilayer neural network (MNN)-based optimal adaptive tracking of partially uncertain nonlinear discrete-time (DT) systems in affine form. By employing an actor–critic neural network (NN) to approximate the value function and optimal control policy, the critic NN is updated via a novel hybrid learning scheme, where its weights are adjusted once at a sampling instant and also in a finite iterative manner within the instants to enhance the convergence rate. Moreover, to deal with the persistency of excitation (PE) condition, a replay buffer is incorporated into the critic update law through concurrent learning. To address the vanishing …


Continual Learning-Based Optimal Output Tracking Of Nonlinear Discrete-Time Systems With Constraints: Application To Safe Cargo Transfer, Behzad Farzanegan, S. (Sarangapani) Jagannathan Jan 2023

Continual Learning-Based Optimal Output Tracking Of Nonlinear Discrete-Time Systems With Constraints: Application To Safe Cargo Transfer, Behzad Farzanegan, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This Paper Addresses a Novel Lifelong Learning (LL)-Based Optimal Output Tracking Control of Uncertain Non-Linear Affine Discrete-Time Systems (DT) with State Constraints. First, to Deal with Optimal Tracking and Reduce the Steady State Error, a Novel Augmented System, Including Tracking Error and its Integral Value and Desired Trajectory, is Proposed. to Guarantee Safety, an Asymmetric Barrier Function (BF) is Incorporated into the Utility Function to Keep the Tracking Error in a Safe Region. Then, an Adaptive Neural Network (NN) Observer is Employed to Estimate the State Vector and the Control Input Matrix of the Uncertain Nonlinear System. Next, an NN-Based …


Continual Reinforcement Learning Formulation For Zero-Sum Game-Based Constrained Optimal Tracking, Behzad Farzanegan, Sarangapani Jagannathan Jan 2023

Continual Reinforcement Learning Formulation For Zero-Sum Game-Based Constrained Optimal Tracking, Behzad Farzanegan, Sarangapani Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This study provides a novel reinforcement learning-based optimal tracking control of partially uncertain nonlinear discrete-time (DT) systems with state constraints using zero-sum game (ZSG) formulation. To address optimal tracking, a novel augmented system consisting of tracking error and its integral value, along with an uncertain desired trajectory, is constructed. A barrier function (BF) with a tradeoff factor is incorporated into the cost function to keep the state trajectories to remain within a compact set and to balance safety with optimality. Next, by using the modified value functional, the ZSG formulation is introduced wherein an actor–critic neural network (NN) framework is …


Securing The Transportation Of Tomorrow: Enabling Self-Healing Intelligent Transportation, Elanor Jackson, Sahra Sedigh Sarvestani Jan 2023

Securing The Transportation Of Tomorrow: Enabling Self-Healing Intelligent Transportation, Elanor Jackson, Sahra Sedigh Sarvestani

Electrical and Computer Engineering Faculty Research & Creative Works

The safety of autonomous vehicles relies on dependable and secure infrastructure for intelligent transportation. The doctoral research described in this paper aims to enable self-healing and survivability of the intelligent transportation systems required for autonomous vehicles (AV-ITS). The proposed approach is comprised of four major elements: qualitative and quantitative modeling of the AV-ITS, stochastic analysis to capture and quantify interdependencies, mitigation of disruptions, and validation of efficacy of the self-healing process. This paper describes the overall methodology and presents preliminary results, including an agent-based model for detection of and recovery from disruptions to the AV-ITS.


An Accurate And Computationally Efficient Method For Battery Capacity Fade Modeling, D. M. Ajiboye, Jonathan W. Kimball, R.(Robert) G. Landers, John (T.) Park Mar 2022

An Accurate And Computationally Efficient Method For Battery Capacity Fade Modeling, D. M. Ajiboye, Jonathan W. Kimball, R.(Robert) G. Landers, John (T.) Park

Electrical and Computer Engineering Faculty Research & Creative Works

The Industry Demand for Accurate and Fast Algorithms that Model Vital Battery Parameters, E.g., State-Of-Health, State-Of-Charge, Pulse-Power Capability, is Substantial. One of the Most Critical Models is Battery Capacity Fade. the Key Challenge with Physics-Based Battery Capacity Fade Modeling is the High Numerical Cost in Solving Complex Models. in This Study, an Efficient and Fast Model is Presented to Capture Capacity Fade in Lithium-Ion Batteries. Here, the High-Order Chebyshev Spectral Method is Employed to Address the Associated Complexity with Physics-Based Capacity Fade Models. its Many Advantages, Such as Low Computational Memory, High Accuracy, Exponential Convergence, and Ease of Implementation, Allow …


Chimeranet: U-Net For Hair Detection In Dermoscopic Skin Lesion Images, Norsang Lama, Reda Kasmi, Jason R. Hagerty, R. Joe Stanley, Reagan Harris Young, Jessica Miinch, Januka Nepal, Anand Nambisan, William V. Stoecker Jan 2022

Chimeranet: U-Net For Hair Detection In Dermoscopic Skin Lesion Images, Norsang Lama, Reda Kasmi, Jason R. Hagerty, R. Joe Stanley, Reagan Harris Young, Jessica Miinch, Januka Nepal, Anand Nambisan, William V. Stoecker

Electrical and Computer Engineering Faculty Research & Creative Works

Hair and ruler mark structures in dermoscopic images are an obstacle preventing accurate image segmentation and detection of critical network features. Recognition and removal of hairs from images can be challenging, especially for hairs that are thin, overlapping, faded, or of similar color as skin or overlaid on a textured lesion. This paper proposes a novel deep learning (DL) technique to detect hair and ruler marks in skin lesion images. Our proposed ChimeraNet is an encoder-decoder architecture that employs pretrained EfficientNet in the encoder and squeeze-and-excitation residual (SERes) structures in the decoder. We applied this approach at multiple image sizes …


An Explainable And Statistically Validated Ensemble Clustering Model Applied To The Identification Of Traumatic Brain Injury Subgroups, Dacosta Yeboah, Louis Steinmeister, Daniel B. Hier, Bassam Hadi, Donald C. Wunsch, Gayla R. Olbricht, Tayo Obafemi-Ajayi Sep 2020

An Explainable And Statistically Validated Ensemble Clustering Model Applied To The Identification Of Traumatic Brain Injury Subgroups, Dacosta Yeboah, Louis Steinmeister, Daniel B. Hier, Bassam Hadi, Donald C. Wunsch, Gayla R. Olbricht, Tayo Obafemi-Ajayi

Electrical and Computer Engineering Faculty Research & Creative Works

We present a framework for an explainable and statistically validated ensemble clustering model applied to Traumatic Brain Injury (TBI). The objective of our analysis is to identify patient injury severity subgroups and key phenotypes that delineate these subgroups using varied clinical and computed tomography data. Explainable and statistically-validated models are essential because a data-driven identification of subgroups is an inherently multidisciplinary undertaking. In our case, this procedure yielded six distinct patient subgroups with respect to mechanism of injury, severity of presentation, anatomy, psychometric, and functional outcome. This framework for ensemble cluster analysis fully integrates statistical methods at several stages of …


Evaluation Of Standard And Semantically-Augmented Distance Metrics For Neurology Patients, Daniel B. Hier, Jonathan Kopel, Steven U. Brint, Donald C. Wunsch, Gayla R. Olbricht, Sima Azizi, Blaine Allen Aug 2020

Evaluation Of Standard And Semantically-Augmented Distance Metrics For Neurology Patients, Daniel B. Hier, Jonathan Kopel, Steven U. Brint, Donald C. Wunsch, Gayla R. Olbricht, Sima Azizi, Blaine Allen

Electrical and Computer Engineering Faculty Research & Creative Works

Background: Patient distances can be calculated based on signs and symptoms derived from an ontological hierarchy. There is controversy as to whether patient distance metrics that consider the semantic similarity between concepts can outperform standard patient distance metrics that are agnostic to concept similarity. The choice of distance metric can dominate the performance of classification or clustering algorithms. Our objective was to determine if semantically augmented distance metrics would outperform standard metrics on machine learning tasks.

Methods: We converted the neurological findings from 382 published neurology cases into sets of concepts with corresponding machine-readable codes. We calculated patient distances by …


In Situ Nmr Parameter Monitoring Systems And Methods For Measuring Ph And Temperature, Ming Huang, Lingyu Chi, Rex E. Gerald Ii, Jie Huang, Annalise R. Pfaff, Klaus Woelk May 2019

In Situ Nmr Parameter Monitoring Systems And Methods For Measuring Ph And Temperature, Ming Huang, Lingyu Chi, Rex E. Gerald Ii, Jie Huang, Annalise R. Pfaff, Klaus Woelk

Electrical and Computer Engineering Faculty Research & Creative Works

Devices and methods are provided for measuring temperatures and pHs of a sample in situ using NMR spectroscopy, and for sealing one or more ends of a capillary tube after a reference material has been added to the capillary tube, which is used in an in situ NMR temperature measurement device. A method for measuring a pH of a sample in situ using NMR spectroscopy includes providing an in situ NMR pH measurement device. This device includes a sample housing member configured to house a target sample, at least one pH sensor configured to exhibit an NMR spectral change due …


Capillary-Tube Package Devices For The Quantitative Performance Evaluation Of Nuclear Magnetic Resonance Spectrometers And Pulse Sequences, Lingyu Chi, Ming Huang, Annalise R. Pfaff, Jie Huang, Rex E. Gerald Ii, Klaus Woelk Dec 2018

Capillary-Tube Package Devices For The Quantitative Performance Evaluation Of Nuclear Magnetic Resonance Spectrometers And Pulse Sequences, Lingyu Chi, Ming Huang, Annalise R. Pfaff, Jie Huang, Rex E. Gerald Ii, Klaus Woelk

Electrical and Computer Engineering Faculty Research & Creative Works

With the increased sensitivity of modern nuclear magnetic resonance (NMR) spectrometers, the minimum amount needed for chemical-shift referencing of NMR spectra has decreased to a point where a few microliters can be sufficient to observe a reference signal. The reduction in the amount of required reference material is the basis for the NMR Capillary-tube Package (CapPack) platform that utilizes capillary tubes with inner diameters smaller than 150 µm as NMR-tube inserts for external reference standards. It is shown how commercially available electrophoresis capillary tubes with outer diameters of 360 µm are filled with reference liquids or solutions and then permanently …


Nmr Studies Of Loaded Microspheres, Ming Huang, Sisi Chen, Rex E. Gerald Ii, Jie Huang, Klaus Woelk May 2018

Nmr Studies Of Loaded Microspheres, Ming Huang, Sisi Chen, Rex E. Gerald Ii, Jie Huang, Klaus Woelk

Electrical and Computer Engineering Faculty Research & Creative Works

Porous-wall hollow glass microspheres (PWHGMs) are a novel form of glass materials that consist of 1-μm-thick porous silica shells, 20-100 μm in diameter, with a hollow cavity in the center. Utilizing the central cavity for material storage and the porous walls for controlled release is a unique combination that renders PWHGMs a superior vehicle for targeted drug delivery. In this study, NMR spectroscopy was used to characterize PWHGMs for the first time. A vacuum-based loading system was developed to load PWHGMs with various compounds followed by a washing procedure that uses solvents immiscible with the target material. Immiscible binary model …


Direct Error Driven Learning For Deep Neural Networks With Applications To Bigdata, R. Krishnan, Jagannathan Sarangapani, V. A. Samaranayake Apr 2018

Direct Error Driven Learning For Deep Neural Networks With Applications To Bigdata, R. Krishnan, Jagannathan Sarangapani, V. A. Samaranayake

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, generalization error for traditional learning regimes-based classification is demonstrated to increase in the presence of bigdata challenges such as noise and heterogeneity. To reduce this error while mitigating vanishing gradients, a deep neural network (NN)-based framework with a direct error-driven learning scheme is proposed. To reduce the impact of heterogeneity, an overall cost comprised of the learning error and approximate generalization error is defined where two NNs are utilized to estimate the costs respectively. To mitigate the issue of vanishing gradients, a direct error-driven learning regime is proposed where the error is directly utilized for learning. It …


Fuzzy Color Clustering For Melanoma Diagnosis In Dermoscopy Images, Haidar A. Almubarak, R. Joe Stanley, William V. Stoecker, Randy Hays Moss Jul 2017

Fuzzy Color Clustering For Melanoma Diagnosis In Dermoscopy Images, Haidar A. Almubarak, R. Joe Stanley, William V. Stoecker, Randy Hays Moss

Electrical and Computer Engineering Faculty Research & Creative Works

A fuzzy logic-based color histogram analysis technique is presented for discriminating benign skin lesions from malignant melanomas in dermoscopy images. The approach extends previous research for utilizing a fuzzy set for skin lesion color for a specified class of skin lesions, using alpha-cut and support set cardinality for quantifying a fuzzy ratio skin lesion color feature. Skin lesion discrimination results are reported for the fuzzy clustering ratio over different regions of the lesion over a data set of 517 dermoscopy images consisting of 175 invasive melanomas and 342 benign lesions. Experimental results show that the fuzzy clustering ratio applied over …


Enhancements In Localized Classification For Uterine Cervical Cancer Digital Histology Image Assessment, Peng Guo, Haidar A. Almubarak, Koyel Banerjee, R. Joe Stanley, L. Rodney Long, Sameer K. Antani, George R. Thoma, Rosemary E. Zuna, Shelliane R. Frazier, Randy Hays Moss, William V. Stoecker Dec 2016

Enhancements In Localized Classification For Uterine Cervical Cancer Digital Histology Image Assessment, Peng Guo, Haidar A. Almubarak, Koyel Banerjee, R. Joe Stanley, L. Rodney Long, Sameer K. Antani, George R. Thoma, Rosemary E. Zuna, Shelliane R. Frazier, Randy Hays Moss, William V. Stoecker

Electrical and Computer Engineering Faculty Research & Creative Works

Background: In previous research, we introduced an automated, localized, fusion-based approach for classifying uterine cervix squamous epithelium into Normal, CIN1, CIN2, and CIN3 grades of cervical intraepithelial neoplasia (CIN) based on digitized histology image analysis. As part of the CIN assessment process, acellular and atypical cell concentration features were computed from vertical segment partitions of the epithelium region to quantize the relative distribution of nuclei.

Methods: Feature data was extracted from 610 individual segments from 61 images for epithelium classification into categories of Normal, CIN1, CIN2, and CIN3. The classification results were compared against CIN labels obtained from two pathologists …


Real-Time Supervised Detection Of Pink Areas In Dermoscopic Images Of Melanoma: Importance Of Color Shades, Texture And Location, Ravneet Kaur, P. P. Albano, Justin G. Cole, Jason R. Hagerty, Robert W. Leander, Randy Hays Moss, William V. Stoecker Nov 2015

Real-Time Supervised Detection Of Pink Areas In Dermoscopic Images Of Melanoma: Importance Of Color Shades, Texture And Location, Ravneet Kaur, P. P. Albano, Justin G. Cole, Jason R. Hagerty, Robert W. Leander, Randy Hays Moss, William V. Stoecker

Electrical and Computer Engineering Faculty Research & Creative Works

Background/Purpose: Early detection of malignant melanoma is an important public health challenge. In the USA, dermatologists are seeing more melanomas at an early stage, before classic melanoma features have become apparent. Pink color is a feature of these early melanomas. If rapid and accurate automatic detection of pink color in these melanomas could be accomplished, there could be significant public health benefits.

Methods: Detection of three shades of pink (light pink, dark pink, and orange pink) was accomplished using color analysis techniques in five color planes (red, green, blue, hue, and saturation). Color shade analysis was performed using a logistic …


Real Time Mission Planning, Emad William Saad, Stefan Richard Bieniawski, Paul Edward Riley Pigg, John Lyle Vian, Paul Michael Robinette, Donald C. Wunsch Jun 2015

Real Time Mission Planning, Emad William Saad, Stefan Richard Bieniawski, Paul Edward Riley Pigg, John Lyle Vian, Paul Michael Robinette, Donald C. Wunsch

Electrical and Computer Engineering Faculty Research & Creative Works

The different advantageous embodiments provide a system comprising a number of computers, a graphical user interface, first program code stored on the computer, and second program code stored on the computer. The graphical user interface is executed by a computer in the number of computers. The computer is configured to run the first program code to define a mission using a number of mission elements. The computer is configured to run the second program code to generate instructions for a number of assets to execute the mission and monitor the number of assets during execution of the mission.