Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Strongly Correlated Phases In Quantum Hall Systems, Amartya Saha Jan 2021

Strongly Correlated Phases In Quantum Hall Systems, Amartya Saha

Theses and Dissertations--Physics and Astronomy

Quantum Hall systems have a one-body energy spectrum consisting of dispersion-less Landau levels. Electron-electron interactions thus dominate in partially filled Landau levels, which exhibit a myriad of strongly correlated phases such as quantum hall ferromagnets and fractional quantum Hall phases. We study two examples of these phenomena.

In the first project, we explore the ground state of a system with an interface between two semi-infinite regions with fillings ν= 4 and ν= 3 respectively. The width of the interface can be controlled by varying the background potential, which provides an additional tuning parameter. For a certain range of …


Graphene In A Uniform Magnetic Field, Ankur Das Jan 2020

Graphene In A Uniform Magnetic Field, Ankur Das

Theses and Dissertations--Physics and Astronomy

We study monolayer graphene in a uniform magnetic field in the absence and presence of interactions. In the non-interacting limit, for p/q flux quanta per unit cell (p, q are coprime integer), the central two bands have 2q Dirac points in the Brillouin zone (BZ) in the nearest-neighbor model. These touchings and their locations are guaranteed by chiral symmetry and the lattice symmetries of the honeycomb structure. If we add a staggered potential and a next-nearest-neighbor hopping we find that their competition leads to a topological phase transition. We also study the stability of the Dirac touchings to one-body perturbations …


Carbon Oxidation At The Atomic Level: A Computational Study On Oxidative Graphene Etching And Pitting Of Graphitic Carbon Surfaces, Simon Schmitt Jan 2020

Carbon Oxidation At The Atomic Level: A Computational Study On Oxidative Graphene Etching And Pitting Of Graphitic Carbon Surfaces, Simon Schmitt

Theses and Dissertations--Mechanical Engineering

In order to understand the oxidation of solid carbon materials by oxygen-containing gases, carbon oxidation has to be studied on the atomic level where the surface reactions occur. Graphene and graphite are etched by oxygen to form characteristic pits that are scattered across the material surface, and pitting in turn leads to microstructural changes that determine the macroscopic oxidation behavior. While this is a well-documented phenomenon, it is heretofore poorly understood due to the notorious difficulty of experiments and a lack of comprehensive computational studies. The main objective of the present work is the development of a computational framework from …


Electronic Properties Of Atomically Thin Material Heterostructures, M. Javad Farrokhi Jan 2019

Electronic Properties Of Atomically Thin Material Heterostructures, M. Javad Farrokhi

Theses and Dissertations--Physics and Astronomy

There is a movement in the electronic industry toward building electronic devices with dimensions smaller than is currently possible. Atomically thin 2D material, such as graphene, bilayer graphene, hBN and MoS2 are great candidate for this goal and they have a potential set of novel electronic properties compare to their bulk counterparts due to the exhibition of quantum confinement effects. To this goal, we have investigated the electric field screening of multilayer 2D materials due to the presence of impurity charge in the interface and vertical electric fifield from back gate. Our result shows a dramatic difference of screening behavior …


Scanning Probe Microscopy Measurements On 2d Materials And Iridates, Armin Ansary Jan 2019

Scanning Probe Microscopy Measurements On 2d Materials And Iridates, Armin Ansary

Theses and Dissertations--Physics and Astronomy

In the past two decades, there has been a quest to understand and utilize novel materials such as iridates and two-dimensional (2D) materials. These classes of materials show a lot of interesting properties both in theoretical predictions as well as experimental results. Physical properties of some of these materials have been investigated using scanning probe measurements, along with other techniques.

One-dimensional (1D) catalytic etching was investigated in few-layer hexagonal boron nitride (hBN) films. Etching of hBN was shown to share several similarities with that of graphitic films. As in graphitic films, etch tracks in hBN commenced at film edges and …


Nanoscale Devices Consisting Of Heterostructures Of Carbon Nanotubes And Two-Dimensional Layered Materials, Mohsen Nasseri Jan 2018

Nanoscale Devices Consisting Of Heterostructures Of Carbon Nanotubes And Two-Dimensional Layered Materials, Mohsen Nasseri

Theses and Dissertations--Physics and Astronomy

One dimensional carbon nanotubes (CNTs) and two-dimensional layered materials like graphene, MoS2, hexagonal boron nitride (hBN), etc. with different electrical and mechanical properties are great candidates for many applications in the future. In this study the synthesis and growth of carbon nanotubes on both conducting graphene and graphite substrates as well as insulating hBN substrate with precise crystallographic orientation is achieved. We show that the nanotubes have a clear preference to align to specific crystal directions of the underlying graphene or hBN substrate. On thicker flakes of graphite, the edges of these 2D materials can control the orientation …


Photoluminescence Mechanism And Applications Of Graphene Quantum Dots, Yiyang Liu Jan 2017

Photoluminescence Mechanism And Applications Of Graphene Quantum Dots, Yiyang Liu

Theses and Dissertations--Chemistry

Graphene quantum dots (GQDs) are small pieces of graphene oxide whose physical dimensions are so confined (a few to a few tens nm) that they have a finite bandgap due to a quantum confinement effect. The finite bandgap of GQDs grants them pronounced absorption bands and a substantial photoluminescence. These optical properties are rarely observed in traditional carbon materials, since most of carbon materials are metallic with a near-zero bandgap and thus have broad absorption spectra with no photoluminescence. The unique optical properties of GQDs, along with GQDs’ inherited advantages from carbon material family (cheap, abundant, non-toxic), make GQDs an …


Physical And Electronic Properties Of Nanoscale 2d Materials, Mathias J. Boland Jan 2016

Physical And Electronic Properties Of Nanoscale 2d Materials, Mathias J. Boland

Theses and Dissertations--Physics and Astronomy

There is a great push towards reducing the size scale of both electronic components and machines. Two dimensional materials, such as graphene, are ideal candidates towards this push, as they are naturally atomically thin. In the case of nanoscale machines, the mechanical properties of the material surfaces become increasingly important. The use of laminar materials, such as graphene and MoS2, to modify the surface properties, yet maintain nanoscale topographical features, are very attractive. Towards this goal, we have investigated the surface properties of MoS2 at the nanoscale using Lateral Force Microscopy (LFM). In these investigations, we measure …


Synthesis, Integration, And Physical Characterization Of Graphene And Carbon Nanotubes, David P. Hunley Jan 2015

Synthesis, Integration, And Physical Characterization Of Graphene And Carbon Nanotubes, David P. Hunley

Theses and Dissertations--Physics and Astronomy

Graphene and carbon nanotubes are among the hottest topics in physics today. Both materials exhibit numerous remarkable mechanical, electrical, optical, and thermal properties that make them promising materials for use in a large number of diverse applications, especially in the field of nanotechnology. One of the ultimate goals driving the fields of nanoscience and nanotechnology has been the attainment of atomically precise construction of intricate integrated systems consisting of materials with diverse behavior. Specifically, it is desirable to have high performance conductors, semiconductors, and insulators integrated into complex atomically precise arrangements. This dissertation represents the culmination of work that has …


Preparation, Characterization And Applications Of Functionalized Carbon Nano-Onions, Mahendra K. Sreeramoju Jan 2013

Preparation, Characterization And Applications Of Functionalized Carbon Nano-Onions, Mahendra K. Sreeramoju

Theses and Dissertations--Chemistry

Carbon nano-onions (CNOs) discovered by Ugarte in 1992 are multi-layered fullerenes that are spherical analogs of multi-walled carbon nanotubes with diameters varying from 6 nm to 30 nm. Among the various methods of synthesis, CNOs prepared by graphitization of nanodiamonds (N-CNOs) and underwater electric arc of graphite rods (A-CNOs) are the subject of our research. N-CNOs are considered as more reactive than A-CNOs due to their smaller size, high curvature and surface defects.

This dissertation focuses on structural analysis and surface functionalization of N- CNOs with diameters ranging from 6—10 nm. Synthetic approaches such as oleum- assisted oxidation, Freidel-Crafts acylation …