Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Plant Sciences

Selected Works

Biofuel crops

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

A Realistic Meteorological Assessment Of Perennial Biofuel Crop Deployment: A Southern Great Plains Perspective, Melissa Wagner, Meng Wang, Gonzalo Miguez-Macho, Jesse Miller, Andy Vanloocke, Justin E. Bagley, Carl J. Bernacchi, Matei Georgescu Jan 2017

A Realistic Meteorological Assessment Of Perennial Biofuel Crop Deployment: A Southern Great Plains Perspective, Melissa Wagner, Meng Wang, Gonzalo Miguez-Macho, Jesse Miller, Andy Vanloocke, Justin E. Bagley, Carl J. Bernacchi, Matei Georgescu

Andy VanLoocke

Utility of perennial bioenergy crops (e.g., switchgrass and miscanthus) offers unique opportunities to transition toward a more sustainable energy pathway due to their reduced carbon footprint, averted competition with food crops, and ability to grow on abandoned and degraded farmlands. Studies that have examined biogeophysical impacts of these crops noted a positive feedback between near-surface cooling and enhanced evapotranspiration (ET), but also potential unintended consequences of soil moisture and groundwater depletion. To better understand hydrometeorological effects of perennial bioenergy crop expansion, this study conducted high-resolution (2-km grid spacing) simulations with a state-of-the-art atmospheric model (Weather Research and Forecasting system) dynamically …


Candidate Perennial Bioenergy Grasses Have A Higher Albedo Than Annual Row Crops, Jesse N. Miller, Andy Vanloocke, Nuria Gomez-Casanovas, Carl J. Bernacchi Jan 2017

Candidate Perennial Bioenergy Grasses Have A Higher Albedo Than Annual Row Crops, Jesse N. Miller, Andy Vanloocke, Nuria Gomez-Casanovas, Carl J. Bernacchi

Andy VanLoocke

The production of perennial cellulosic feedstocks for bioenergy presents the potential to diversify regional economies and the national energy supply, while also serving as climate ‘regulators’ due to a number of biogeochemical and biogeophysical differences relative to row crops. Numerous observational and model-based approaches have investigated biogeochemical trade-offs, such as increased carbon sequestration and increased water use, associated with growing cellulosic feedstocks. A less understood aspect is the biogeophysical changes associated with the difference in albedo (a), which could alter the local energy balance and cause local to regional cooling several times larger than that associated with offsetting carbon. Here, …