Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Friedel–Crafts Addition Of Indoles To Nitrones Promoted By Trimethylsilyl Trifluoromethanesulfonate, Zachary Z. Oracheff, Helen L. Xia, Christopher D. Poff, Scott E. Isaacson, C. Wade Downey Jan 2021

Friedel–Crafts Addition Of Indoles To Nitrones Promoted By Trimethylsilyl Trifluoromethanesulfonate, Zachary Z. Oracheff, Helen L. Xia, Christopher D. Poff, Scott E. Isaacson, C. Wade Downey

Chemistry Faculty Publications

N-alkylindoles undergo Friedel–Crafts addition to aryl and secondary alkyl nitrones in the presence of trimethylsilyl trifluoromethanesulfonate and a trialkylamine to produce 3-(1- (silyloxyamino)alkyl)indoles. Spontaneous conversion to the bisindolyl(aryl)methanes, which is thermodynamically favored for nitrones derived from aromatic aldehydes, is suppressed under the reaction conditions. The silyloxyamino group can be deprotected with tetrabutylammonium fluoride to yield the hydroxylamine.


One-Pot Synthesis Of 2-Methylfurans From 3- (Trimethylsilyl)Propargyl Acetates Promoted By Trimethylsilyl Trifluoromethanesulfonate, Danielle E. Sklar, Alex V. Helbling, Yiqi Liu, C. Wade Downey Jan 2021

One-Pot Synthesis Of 2-Methylfurans From 3- (Trimethylsilyl)Propargyl Acetates Promoted By Trimethylsilyl Trifluoromethanesulfonate, Danielle E. Sklar, Alex V. Helbling, Yiqi Liu, C. Wade Downey

Chemistry Faculty Publications

In the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf) and triethylamine, 3-(trimethylsilyl)propargyl carboxylates undergo a one-pot alkylation-cyclization- desilylation reaction with ketones to produce 2-methylfurans. Alkylation at 0 °C in methylene chloride, followed by acid-catalyzed cyclization at room temperature, provides the furans in 52-86% yield. Cyclization and desilylation appear to be promoted by triflic acid generated in situ from the exposure of the reaction mixture to water upon completion of the initial substitution reaction.