Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Nanoparticles

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 309

Full-Text Articles in Physical Sciences and Mathematics

Synthesis, Molecular Characteristics, And Antibacterial Assessment Of Marine Hydroid Aqueous Extract-Based Silver Bio-Nanoparticles, Fredryk Mandey, Aulia Rhamdani Arfan, Rugaiyah Andi Arfah Mar 2024

Synthesis, Molecular Characteristics, And Antibacterial Assessment Of Marine Hydroid Aqueous Extract-Based Silver Bio-Nanoparticles, Fredryk Mandey, Aulia Rhamdani Arfan, Rugaiyah Andi Arfah

Makara Journal of Science

This investigation aims to synthesize, analyze the molecularity, and test the ability of bacterial inhibition capability of silver nanoparticles that have been synthesized by simply mixing silver nitrate and aqueous extracts of marine natural products with and without the addition of amylum as a stabilizing agent. This research, with and without the addition of amylum as a stabilizing agent, obtained 39.0 and 55.2 mg of solids of round-shaped morphology silver nanoparticles with diameters of 87.9 and 103.0 nm., respectively. In addition, the antibacterial testing assay against Staphylococcus aureus and Escherichia coli showed some considerably good results. S. aureus with the …


New Ways To Improve Dispersibility Of Nanotubes: Approaching From The Formation Of Silicon Nanoparticles By High Energy Reactive Ball Milling (Herbm) In Polar Solvents, Julie P. Vanegas, Yolanda V. Gutierrez, Joaquin Rivera, Juan García Jr. Mar 2024

New Ways To Improve Dispersibility Of Nanotubes: Approaching From The Formation Of Silicon Nanoparticles By High Energy Reactive Ball Milling (Herbm) In Polar Solvents, Julie P. Vanegas, Yolanda V. Gutierrez, Joaquin Rivera, Juan García Jr.

Research Symposium

Background: This research aims to synthesize stable silicon nanoparticles using different molar ratios of N-Cyclohexyl-2-pyrrolidone (CHP) and Silicon to demonstrate if there is any significance towards the production of effective nanotubes. To determine this, the synthesized nanoparticles will be characterized by scanning electron microscopy (SEM), UV visible absorption spectroscopy, and photoluminescence spectroscopy (PL).

Methods: 50 Mg of silicon wafer are added with differing ratios of ligand (CHP), 5mL of water, and 3 steel iron balls into a ball milling vial. Vials are then placed into a ball milling apparatus for 7 cycles or 3.5 hours. Once the cycles are complete, …


Palladium (0) Nanoparticles Distributed On Lanthanum (Iii) Oxide As An Effective Catalyst For The Methanolysis Of Hydrazine-Borane To Produce Hydrogen, Adem Rüzgar, Lokman Şener, Yaşar Karataş, Mehmet Gülcan Feb 2024

Palladium (0) Nanoparticles Distributed On Lanthanum (Iii) Oxide As An Effective Catalyst For The Methanolysis Of Hydrazine-Borane To Produce Hydrogen, Adem Rüzgar, Lokman Şener, Yaşar Karataş, Mehmet Gülcan

Turkish Journal of Chemistry

Pd (0) nanoparticles (NPs) distributed on lanthanum (III) oxide were ex situ generated from the reduction of Pd2+ ions using NaBH4 as reducing agent. The Pd/La2O3 displayed good catalytic activity in H2(g) releasing from the hydrazine-borane (HB) methanolysis reaction and it was identified by advanced techniques. Pd/La2O3 was found to be an active catalyst procuring three equiv. H2(g) per mole of HB. The results from TEM images represent the formation of Pd (0) NPs with an average particle size of 1.94 ± 0.1 nm on the surface of La2O3. Moreover, Pd/La2O3 with various Pd loadings were prepared and tested as …


Sulfate Enhances The Adsorption And Retention Of Cu(Ii) And Zn(Ii) To Dispersed And Aggregated Iron Oxyhydroxide Nanoparticles, Emma M. Kocik, Abigail Kim, Miranda L. Aiken, Lauren Smith, Christopher S. Kim Feb 2024

Sulfate Enhances The Adsorption And Retention Of Cu(Ii) And Zn(Ii) To Dispersed And Aggregated Iron Oxyhydroxide Nanoparticles, Emma M. Kocik, Abigail Kim, Miranda L. Aiken, Lauren Smith, Christopher S. Kim

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The adsorption and retention of metal ions to nanoscale iron (hydr)oxides in aqueous systems is significantly influenced by prevailing environmental conditions. We examined the influence of sulfate, the second most common anion in seawater that is present in many other natural aquatic systems, on the adsorption and retention of Cu(II) and Zn(II) to synthetic iron oxyhydroxide nanoparticles (NPs) and their aggregates. Batch uptake experiments with monodisperse NPs and NPs aggregated by changes in pH, ionic strength, and temperature were conducted over sulfate concentrations ranging from 0 to 0.30 M. The introduction of 0.03 M sulfate significantly increased the initial adsorption …


Photoluminescence Switching In Quantum Dots Connected With Fluorinated And Hydrogenated Photochromic Molecules, Ephraiem S. Sarabamoun, Jonathan M. Bietsch, Pramod Aryal, Amelia G. Reid, Maurice Curran, Grayson Johnson, Esther H. R. Tsai, Charles W. Machan, Guijun Wang, Joshua J. Choi Jan 2024

Photoluminescence Switching In Quantum Dots Connected With Fluorinated And Hydrogenated Photochromic Molecules, Ephraiem S. Sarabamoun, Jonathan M. Bietsch, Pramod Aryal, Amelia G. Reid, Maurice Curran, Grayson Johnson, Esther H. R. Tsai, Charles W. Machan, Guijun Wang, Joshua J. Choi

Chemistry & Biochemistry Faculty Publications

We investigate switching of photoluminescence (PL) from PbS quantum dots (QDs) crosslinked with two different types of photochromic diarylethene molecules, 4,4'-(1-cyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (1H) and 4,4'-(1-perfluorocyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (2F). Our results show that the QDs crosslinked with the hydrogenated molecule (1H) exhibit a greater amount of switching in photoluminescence intensity compared to QDs crosslinked with the fluorinated molecule (2F). With a combination of differential pulse voltammetry and density functional theory, we attribute the different amount of PL switching to the different energy levels between 1H and 2F molecules which result in different potential barrier …


Scalable Solution Processing Of Niox Nanoparticles., Peter James Armstrong Dec 2023

Scalable Solution Processing Of Niox Nanoparticles., Peter James Armstrong

Electronic Theses and Dissertations

Perovskite solar cells (PSCs) are a promising alternative to silicon-based photovoltaics. However, PSCs face several challenges due to shortcomings in their stability, module efficiency, and scaled production. Although PSCs is still a young field of research, significant attention has been given to demonstrating power conversion efficiencies that are on par with traditional silicon. With that target reached, converting the laboratory demonstration into practical materials to increase access and abundance of solar energy are among the next large targets for the field. This comes with material challenges for perovskite and their companion charge transport layers (CTLs). Among the charge transport materials …


Synthesis And Characterization Of Acetaminophen-Derived Nanoparticles: A Novel Approach To Inhibit Fibril Formation, Hannia Elena Mendoza-Dickey Dec 2023

Synthesis And Characterization Of Acetaminophen-Derived Nanoparticles: A Novel Approach To Inhibit Fibril Formation, Hannia Elena Mendoza-Dickey

Open Access Theses & Dissertations

In the realm of nanotechnology, nanoparticles (NPs), have garnered significant notoriety in recent scientific research due to their unique physical and chemical properties, such as fluorescence emissions, nanoscale dimensions (typically <1000 nm), ease of surface modification, and biocompatibility. Nanoparticles have shown their potential across a variety of areas, including advanced industrial applications and cutting-edge biomedical research. Considering their cost-effective synthesis, they have shown promise as therapeutic agents for a variety of bioimaging and biomedical applications. This thesis describes the synthesis and detailed analysis of acetaminophen-derived nanoparticles. Techniques such as Dynamic Light Scattering (DLS), Thioflavin T (THT) assay, Attenuated Total Reflectance Infrared Spectroscopy (ATR-IR), 1H NMR spectroscopy, and Ultraviolet-Visible Spectroscopy (UV-VIS) were utilized for structural and functional assessments. Acetaminophen derived nanoparticles (ANPs) exhibit potential to hinder the amyloidogenic conversion of soluble amyloid-forming proteins into their toxic form. The novelty of this research focuses on the utilization of chemical structures capable of traversing the Blood Brain Barrier (BBB) to mitigate xenotoxicant-induced neuronal damage, a notable contributor to neurodegenerative disorders. This thesis describes the synthesis and characterization of acetaminophen derived-nanoparticles (ANPs). Our nanoparticles possess anti-amyloidogenic properties as evidenced by their ability to disrupt in the soluble-to-toxic trajectory of HEWL. The prevalence and evolution of amyloid fibrils are consistent features in the pathology of neurodegenerative diseases such as Parkinson's disease (PD), Alzheimerâ??s Disease (AD), and Huntingtonâ??s Disease (HD), as well as metabolic disorders like Type 2 diabetes (T2D). The relationship between amyloidogenic pathways and these disorders highlights the imperative for enhanced understanding and the formulation of specific therapeutic interventions.


Investigation Of The Thermodynamics For The Removal Of As(Iii) And As(V) From Water Using Synthesized Zno Nanoparticles And The Effects Of Ph, Temperature, And Time, Helia Magali Morales, Grecia Torreblanca, Arnulfo Mar, Mataz Alcoutlabi, Thomas Eubanks, Erik Plata, Jason Parsons Sep 2023

Investigation Of The Thermodynamics For The Removal Of As(Iii) And As(V) From Water Using Synthesized Zno Nanoparticles And The Effects Of Ph, Temperature, And Time, Helia Magali Morales, Grecia Torreblanca, Arnulfo Mar, Mataz Alcoutlabi, Thomas Eubanks, Erik Plata, Jason Parsons

Chemistry Faculty Publications and Presentations

In the present study, the removal of both As(III) and As(V) from aqueous solutions using synthesized ZnO nanomaterials was achieved. The ZnO nanomaterial was synthesized using a precipitation technique and characterized using XRD, SEM, and Raman spectroscopy. XRD confirmed the ZnO nanoparticles were present in the hexagonal wurtzite structure. SEM of the particles showed they were aggregates of triangular and spherical particles. The average nanoparticle size was determined to be 62.03 ± 4.06 nm using Scherrer’s analysis of the three largest diffraction peaks. Raman spectroscopy of the ZnO nanoparticles showed only ZnO peaks, whereas the after-reaction samples indicated that As(V) …


In Vitro Antioxidant Activity Of Alginate Nanoparticles Encapsulating The Aqueous Extract Of Coccinia Grandis L., Walimuni Nayomi Deshani De Silva, Anoja Priyadarshani Attanayake, Liyanage Dona Ashanti Menuka Arawwawala, Desiree Nedra Karunaratne, Geethi Kaushalya Pamunuwa Aug 2023

In Vitro Antioxidant Activity Of Alginate Nanoparticles Encapsulating The Aqueous Extract Of Coccinia Grandis L., Walimuni Nayomi Deshani De Silva, Anoja Priyadarshani Attanayake, Liyanage Dona Ashanti Menuka Arawwawala, Desiree Nedra Karunaratne, Geethi Kaushalya Pamunuwa

Turkish Journal of Chemistry

Bioactive compounds in medicinal plants are more susceptible to preventing oxidative stress. Encapsulation of herbal extracts has empowered the properties and characteristics of bioactive compounds. Nanoencapsulation allows the enhancement of the stability of extracts and targeted drug delivery. The present study aims to determine the antioxidant activity of alginate nanoparticles encapsulating the aqueous extract of Coccinia grandis L. (Family: Cucurbitaceae). The aqueous extract of C. grandis (AqCG) was prepared by using ultrasonication (40 ° C, 20 min, 40 kHz) followed by refluxing (2½ h). The prepared AqCG (1-5 mg/mL) encapsulated alginate nanoparticles were synthesized by ionic gelation with the addition …


Manufacturing Of A Flexible Piezoelectric Nanogenerator By Functionalizing Polyvinylidene Fluoride With Lithium Tantalate And Multiwalled Carbon Nanotubes For Energy Harvesting And Sensing Applications, Islam Uddin Shipu Aug 2023

Manufacturing Of A Flexible Piezoelectric Nanogenerator By Functionalizing Polyvinylidene Fluoride With Lithium Tantalate And Multiwalled Carbon Nanotubes For Energy Harvesting And Sensing Applications, Islam Uddin Shipu

Theses and Dissertations

Mechanical energy is one of the readily accessible green energy sources that could be employed to meet the small-scale energy requirement. In order to capture mechanical energy, power the next generation of electronic gadgets, and health monitoring flexible piezoelectric nanogenerators made of light weight polymers and carbon nanotubes have drawn a lot of attention. Lithium tantalate (LiTaO3), a ferroelectric substance, was prepared here and utilized to create a flexible piezoelectric nanogenerator (FPNG). A compact piezoelectric nanogenerator that successfully transfers mechanical energy into electricity was then created using lightweight polyvinylidene fluoride (PVDF), multi-walled carbon nanotube (MWCNT), and LiTaO3 nanoparticles. To create …


New Methodologies For Sustainable Organic Synthesis In Water., Sudripet Sharma Aug 2023

New Methodologies For Sustainable Organic Synthesis In Water., Sudripet Sharma

Electronic Theses and Dissertations

Water is stable, benign, and green solvent. Its usage as a solvent in organic synthesis is significantly enhanced by micellar catalysis. However, replacing water as a reaction medium in organic synthesis is not sufficient to meet the sustainability challenges—excessive organic solvents are still required for product isolation and purification. Notably, solvents used in syntheses contribute to more than 80% of waste generation. In addition to solvents, the use of palladium in large amounts is also a problem for the future as it is a precious, low-abundance metal, and its supply is dwindling. Therefore, this dissertation highlights the various sustainable protocols …


Utilizing Fluorescent Nanoscale Particles To Create A Map Of The Electric Double Layer, Quintus Owen May 2023

Utilizing Fluorescent Nanoscale Particles To Create A Map Of The Electric Double Layer, Quintus Owen

Theses and Dissertations

The interactions between charged particles in solution and an applied electric field follow several models, most notably the Gouy-Chapman-Stern model, for the establishment of an electric double layer along the electrode, but these models make several assumptions of ionic concentrations and an infinite bulk solution. As more scientific progress is made for the finite and single molecule reactions inside microfluidic cells, the limitations of the models become more extreme. Thus, creating an accurate map of the precise response of charged nanoparticles in an electric field becomes increasingly vital. Another compounding factor is Brownian motion’s inverse relationship with size: large easily …


Microwave Synthesis Of Carbon Dot Nanoparticles, Hayden Ferguson May 2023

Microwave Synthesis Of Carbon Dot Nanoparticles, Hayden Ferguson

Undergraduate Honors Theses

This study aimed to improve the known microwave method to produce carbon dot nanoparticles from ethylenediamine and citric acid. Carbon dots have recently gained much attention as they have diverse applications, such as bioimaging and drug delivery reagents as cancer theranostics. Research was focused on establishing the ideal time for the synthetic reaction to produce carbon dot nanoparticles with the microwave method. After several trials, the 16-minute trial provided the best results based on Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, fluorescence spectroscopy, and ultraviolet exposure.


Investigations On The Active Catalyst In Pd Catalyzed Organic Reactions, Riley Mcgraw Apr 2023

Investigations On The Active Catalyst In Pd Catalyzed Organic Reactions, Riley Mcgraw

WWU Honors College Senior Projects

Cross coupling and C-H functionalization reactions are valuable tools in the synthesis of pharmaceuticals, natural products, fine chemicals, and electronics. Molecular precatalysts are frequently used in both reactions but because the reactions use conditions like those employed in intentional preparation of nanoparticles, the presence of nanoparticles is highly likely for both systems. In the case of the cross-coupling reaction, nanoparticles have been shown to have catalytic relevance, but C-H functionalization reactions are widely thought to occur by means of a homogenous catalyst. To better understand the state of the active catalyst, a method of homogeneity analysis by centrifuge is proposed. …


Synthesis And Characterization Of Hydroxy-Functionalized Copper Indium Disulfide Quantum Dots, Julia Schexnayder Apr 2023

Synthesis And Characterization Of Hydroxy-Functionalized Copper Indium Disulfide Quantum Dots, Julia Schexnayder

WWU Honors College Senior Projects

Quantum dots offer tunable electronic and optical properties due to the quantum confinement effect, making them desirable for various applications. However, their native hydrophobic form requires surface chemistry modification for certain applications. This research explores the method of ligand exchange using 11-mercapto-1-undecanol for improving the stability of copper indium disulfide (CIS) quantum dot (QD) nanoparticles in polar environments. The effects of this ligand exchange on QD chemical composition, optical properties, hydroxy-reactivity, and hydrodynamic radius are characterized. Analysis of characterization results indicates successful surface modification through hydroxyfunctionalization, as confirmed by 1H-NMR and IR spectroscopy. The desired optical properties of the QDs …


Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter Jan 2023

Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter

Electrical & Computer Engineering Faculty Publications

Refractive index (RI) sensors are of great interest for label-free optical biosensing. A tapered optical fiber (TOF) RI sensor with micron-sized waist diameters can dramatically enhance sensor sensitivity by reducing the mode volume over a long distance. Here, a simple and fast method is used to fabricate highly sensitive refractive index sensors based on localized surface plasmon resonance (LSPR). Two TOFs (l = 5 mm) with waist diameters of 5 µm and 12 µm demonstrated sensitivity enhancement at λ = 1559 nm for glucose sensing (5-45 wt%) at room temperature. The optical power transmission decreased with increasing glucose concentration due …


The Effect Of Poss Nanoparticles On Crosslinking Of Styrene-Butadiene Rubber Nanocomposites, Seda Beki̇n Açar, Mehmet Ati̇lla Taşdelen, Bağdagül Karaağaç Jan 2023

The Effect Of Poss Nanoparticles On Crosslinking Of Styrene-Butadiene Rubber Nanocomposites, Seda Beki̇n Açar, Mehmet Ati̇lla Taşdelen, Bağdagül Karaağaç

Turkish Journal of Chemistry

The effect of octaisobutyl-polyhedral oligomeric silsesquioxane (OIB-POSS) as a nanosized reinforcement on the cure kinetics, crosslinking density, and mechanical properties of styrene-butadiene rubber (SBR) nanocomposites was examined in this study. For this purpose, SBR compounds with various OIB-POSS nanoparticle loadings at 1, 3, and 5 phr were prepared and their results were compared with a reference compound without OIB-POSS. When 1 phr of OIB-POSS was added to the rubber matrix, the elongation at break values and tensile strength of the corresponding nanocomposite increased by 24.1% and 29.2% compared to the reference sample, respectively. The presence of OIB-POSS nanoparticles and their …


Using Molecular Dynamics Simulations To Decipher Mechanistic Details Of Biomolecular Processes Of Biology And Biotechnology Oriented Applications, Adithya Polasa Dec 2022

Using Molecular Dynamics Simulations To Decipher Mechanistic Details Of Biomolecular Processes Of Biology And Biotechnology Oriented Applications, Adithya Polasa

Graduate Theses and Dissertations

Researchers in chemistry and biology often utilize computer simulations, in conjunction with experimental data, to model and predict the structures, energies, kinetics, processes, and functions of the systems that are their focus of study, ranging from single molecules to whole viruses. Here, we use molecular dynamics (MD) techniques to gain a deeper understanding of biomolecular processes in biology and biotechnology-oriented applications. Using a mixture of equilibrium and non-equilibrium MD simulations, this work describes the insertion process of YidC at the atomic level. In order to better comprehend the insertion process, several docking models of YidC-Pf3 in the lipid bilayer were …


Folic Acid – Carbon Dots – Doxorubicin Nanoparticles As Cancer Theranostic, Michael Tetteh Dec 2022

Folic Acid – Carbon Dots – Doxorubicin Nanoparticles As Cancer Theranostic, Michael Tetteh

Electronic Theses and Dissertations

This work focused on engineering bi-functionalized nanoparticles (NPs) based on carbon dots (CDs) to improve early cancer detection and treatment. Therefore, using folic acid (FA) as a targeting agent, the CDs were prepared to deliver high concentrations (HC) of doxorubicin (DOX) and gemcitabine (GEM) covalently and non-covalently to cancer cells. The prepared FA-CDs-DOX/GEM-HC NPs were characterized using ultraviolet-visible spectroscopy, fluorescence spectroscopy, and Fourier transform infrared spectroscopy. Assessment of the drug loading capacity (DLC) and drug loading efficiency (DLE) indicated that the non-covalent NPs have low DLC but high DLE compared to the relatively low DLE and high DLC of covalent …


Development Of In Situ Second-Order Nonlinear Optical Scatterings For Molecular Behaviors At Aerosol Surfaces, Yuqin Qian Dec 2022

Development Of In Situ Second-Order Nonlinear Optical Scatterings For Molecular Behaviors At Aerosol Surfaces, Yuqin Qian

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Aerosol particles are one of the most important components of the atmosphere. During the growth of aerosol particles, they directly or indirectly affect air quality, human health, and environmental chemistry. Therefore, understanding the chemical and physical properties of such particles is an important scientific, engineering, and medical issue. The growth of aerosol particles in the atmosphere is closely related to the chemical structure at its surface, as well as the heterogeneous reactions which take place at and below the particle’s surface. However, there is a lack of suitable surface-specific analytical techniques which directly measure the chemical structure of aerosol particle …


Fabrication Of Gold Nanoraspberry Arrays By Soft Lithography, Christy Yu-Qing Xie Aug 2022

Fabrication Of Gold Nanoraspberry Arrays By Soft Lithography, Christy Yu-Qing Xie

Undergraduate Student Research Internships Conference

Nanostructures and nanoparticles have garnered increasing interest over the past decade due to their unique properties and applications. These properties include localized surface plasmon resonance (LSPR) and allow for surface modification. We can tune these properties depending on the nanoparticle’s size, shape, and geometry.

This work aims to fabricate plasmonic platforms through patterning gold nanoparticles (raspberries) by microcontact printing, a simple and cost-effective soft lithography technique. This is done through large-scale patterning using polydimethylsiloxane (PDMS) stamps to pattern an adhesion template and spatially guide the adsorption of gold nanoparticles (AuNPs).


Development Of Plasmonic And X-Ray Luminescence Nanoparticles For Bioimaging And Sensing Applications, Meenakshi Ranasinghe Aug 2022

Development Of Plasmonic And X-Ray Luminescence Nanoparticles For Bioimaging And Sensing Applications, Meenakshi Ranasinghe

All Dissertations

This dissertation discusses the development of plasmonic and X-ray luminescence nanoparticles (~100 nm) to use in bioimaging and sensing applications. The nanoparticles have interesting optical properties compared to their atomic levels and bulk materials. The optical properties of nanomaterials can be controlled by changing size, shape, crystal structure, etc. Also, they have a large surface area that can be functionalized with biomolecules. Therefore, the optical properties and biofunctionalized nanomaterials are useful in biomedical applications such as targeted drug delivery, bioimaging, and sensing. The overall theme is to use nanoparticles with interesting optical properties compared to their atomic levels and bulk …


Novel Synthetic Strategies Toward Polyolefin-Grafted Nanoparticles, Richard Tran Ly Jul 2022

Novel Synthetic Strategies Toward Polyolefin-Grafted Nanoparticles, Richard Tran Ly

Theses and Dissertations

Surface functionalization of nanoparticles has proven to be a powerful and versatile strategy in the development of various materials with advanced properties. Polymer brush composition can range from complex copolymers to more simplistic polyolefin, and by functionalizing nanoparticle surfaces, mobility of distinct particles can then be tuned and, therefore, control over dispersion in a polymer matrix can be achieved. Presented in this dissertation are new synthetic strategies for the preparation of polymer nanocomposites.

The first chapter covers a novel synthetic strategy for ethylene/propylene-like copolymers grafted to silica nanoparticles. This approach utilizes Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization to promote living …


Sol-Gel Synthesis And Spectroscopic Characterization Of Titanium Dioxide Doped With Copper And Iron, Erin L. Jacoski Jun 2022

Sol-Gel Synthesis And Spectroscopic Characterization Of Titanium Dioxide Doped With Copper And Iron, Erin L. Jacoski

Chemistry Senior Theses

A source of bioavailable iron in open oceans stems from aerosols, increasing phytoplankton growth and the sequestration of atmospheric carbon dioxide. These aerosols contain semiconductors, like titanium dioxide, which is known to increase the bioavailability and can trigger photoreduction of Fe3+. Recently, it is suspected that other metals in the aerosols also influence the release of iron. In this work, the effects of doping with iron and copper on the physical characteristics of titanium dioxide nanoparticles, since the photocatalytic potential of titanium dioxide depends on its structure and metal content (anatase vs. rutile), were explored. Titanium dioxide nanoparticles were prepared …


Characterization Of Bimetallic Silver-Copper Nanoinks With Hydroxyethyl-Cellulose Additives, Daniel Brunick May 2022

Characterization Of Bimetallic Silver-Copper Nanoinks With Hydroxyethyl-Cellulose Additives, Daniel Brunick

Undergraduate Honors Theses

Coinage metal nanoparticles remain an intriguing subject for research due to their industrial versatility. Primary applications of coinage metal nanoparticles include printed electronics, solar panels, and sensors. Inks formulated with the nanoparticles are conductive and thus useful for fabricating sensors. Silver-copper nanoalloy inks are viable for the fabrication of flexible sensing devices for the detection of volatile organic compounds. One of the challenges is the ability to synthesize composition-controllable alloy nanoparticles at room temperature through wet chemical methods and achieve controllable sintering at room temperature. This work addresses the challenges by investigating the room-temperature synthesis of silver-copper alloy nanoparticles and …


Synthesis And Characterization Of Ternary Pt Nanoally Catalysts For Fuel Cells, Ylith Peck May 2022

Synthesis And Characterization Of Ternary Pt Nanoally Catalysts For Fuel Cells, Ylith Peck

Undergraduate Honors Theses

A hydrogen fuel cell is an electrochemical device that converts oxygen and hydrogen into electrical energy while producing water as the only by-product, which has attracted growing interest, especially in the automotive industry. This technology is efficient and has zero pollution to the environment, in contrast to the direct use of fossil fuels in combustion engines which produce pollution and greenhouse gas emissions. One of the key components for hydrogen fuel cells is the catalyst that operates at the cathode, which currently use platinum. Due to the scarce amount of platinum in the world, the manufacturing cost for fuel cells …


Investigating Ionic Current Rectification As A Means Of Controllable Drug Delivery Using Silica Nanoparticles And Nano Porous Membranes, Katie L. Nolan Apr 2022

Investigating Ionic Current Rectification As A Means Of Controllable Drug Delivery Using Silica Nanoparticles And Nano Porous Membranes, Katie L. Nolan

Honors College Theses

This project investigates a novel ionic current rectification (ICR) phenomenon created by the opening and closing of nanopores by charged silica nanoparticles (SNPs) under electrophoretic flow. This voltage-controlled opening and closing of the pores can be exploited to allow delivery of nicotine through the pores at programmable intervals. The ICR phenomenon was thoroughly investigated by varying pH, buffer concentration, SNP concentration, and applied voltage range. The mechanism was also verified by testing with a 2-, 3-, and 5-electrode system. Potential cake layer formation was demonstrated in a longer ICR test, and the implications of this on the drug delivery mechanism …


Towards Semiconductor Nanorods With Nickel/Iron Cocatalyst., Kehinde Ayorinde Apr 2022

Towards Semiconductor Nanorods With Nickel/Iron Cocatalyst., Kehinde Ayorinde

Masters Theses & Specialist Projects

The adverse effects associated with the utilization of fossil fuels has led to the need to provide an alternative cleaner energy. Photocatalytic hydrogen evolution reaction via water splitting provides a renewable pathway to generating energy. Our photocatalyst system includes a semiconductor component (CdSe/CdS core/shell nanorods) to capture light and an attached metal (cocatalyst) for the hydrogen evolution reaction. Platinum is an effective metal catalyst for this reaction due to strong proton binding energy that easily facilitates the reduction of water to produce hydrogen gas. However, due to the high cost of platinum, there is a need to find a less …


Catalytic Pyrolysis Of Olive Oil Residue To Produce Synthesis Gas: The Effect Of Bulk And Nano Metal Oxides, Ebru Karadağ, Selva Bi̇lge, Yusuf Osman Donar, Ali̇ Sinağ Jan 2022

Catalytic Pyrolysis Of Olive Oil Residue To Produce Synthesis Gas: The Effect Of Bulk And Nano Metal Oxides, Ebru Karadağ, Selva Bi̇lge, Yusuf Osman Donar, Ali̇ Sinağ

Turkish Journal of Chemistry

In this study, olive oil residue (OR) biomass was pyrolyzed in the presence of bulk MgO (B-MgO), nano-MgO (N-MgO), bulk ZnO (B-ZnO)), and nano-ZnO (N- ZnO) metal oxides at different temperatures (400, 600, and 800 ºC). Significant results were obtained in terms of synthesis gas formation and CO2 reduction. The efficiency distribution of the products obtained as a result of the metal oxide-based pyrolysis process and the effects of metal oxides were examined in detail. Nanometal oxides were synthesized by the hydrothermal method. Characterization of metal oxides was carried out by Brunauer?Emmett?Teller (BET), x-ray powder diffraction (XRD) analysis and scanning-electron …


Synthesis Of Titanium Dioxide Nanoparticles With Renewable Resources And Their Applications: Review, Umut Şafak Öztürk, Ali̇me Çitak Jan 2022

Synthesis Of Titanium Dioxide Nanoparticles With Renewable Resources And Their Applications: Review, Umut Şafak Öztürk, Ali̇me Çitak

Turkish Journal of Chemistry

Metal-oxide nanoparticles have reached a wide range of applications in the last ten years. Titanium dioxide nanoparticles stand out with their unique crystal structure and near-perfect physical and chemical properties at nanoscales (crystal size between 10-100 nm). It has created many applications with its white pigment, semiconductor state, and effective photocatalytic properties, but the synthesis of these nanoparticles is very damaging to nature. Titanium dioxide nanoparticles, which can be synthesized with toxic solvents or high-energy machines, have started to be synthesized by the green synthesis method, which has been a cheap and easy method in recent years. The application areas …