Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

2018

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 1769

Full-Text Articles in Physical Sciences and Mathematics

Mechanism For Copper(Ii)-Mediated Disaggregation Of A Porphyrin J-Aggregate, M. Trapani, I. G. Occhiuto, R. Zagami, G. De Luca, M. A. Castriciano, A. Romeo, L. M. Scolaro, Robert F. Pasternack Dec 2018

Mechanism For Copper(Ii)-Mediated Disaggregation Of A Porphyrin J-Aggregate, M. Trapani, I. G. Occhiuto, R. Zagami, G. De Luca, M. A. Castriciano, A. Romeo, L. M. Scolaro, Robert F. Pasternack

Chemistry & Biochemistry Faculty Works

J-aggregates of anionic meso-tetrakis(4-sulfonatophenyl)porphyrin form at intermediate pH (2.3–3.1) in the presence of NiSO₄ or ZnSO₄ (ionic strength, I.S. = 3.2 M). These aggregates convert to monomeric porphyrin units via metallation with copper(II) ions. The kinetics for the disassembly process, as monitored by UV/vis spectroscopy, exhibits zeroth-order behavior. The observed zeroth-order rate constants show a two-term dependence on copper(II) ion concentrations: linear and second order. Also observed is an inverse dependence on hydrogen ion concentration. Activation parameters have been determined for the disassembly process leading to ΔH^≠ = (+163 ± 15) kJ·mol⁻¹ and ΔS^≠ = (+136 ± 11) J·K⁻¹. A …


Functionalized Carbon Nanotubes In Hydrophobic Drug Delivery, Kun Chen Dec 2018

Functionalized Carbon Nanotubes In Hydrophobic Drug Delivery, Kun Chen

Dissertations

The direct incorporation of carboxylated carbon nanotubes (f-CNTs) into hydrophobic drug particles during their formation via anti-solvent precipitation is presented. The approach is tested using two drugs namely antifungal agent Griseofulvin (GF) and antibiotic Sulfamethoxazole (SMZ) that have very different aqueous solubility. It is observed that the f-CNTs dispersed in the water serve as nucleating sites for crystallization and are readily incorporated into the drug particles without altering crystal structure or other properties. The results show that the hydrophilic f-CNTs dramatically enhance dissolution rate for both drugs. The increased degree of functionalization leads to higher hydrophilicity and therefore faster dissolution …


Table Of Contents Dec 2018

Table Of Contents

Journal of the South Carolina Academy of Science

No abstract provided.


Characterization Of A Protozoan Phosducin-Like Protein-3 (Phlp-3) Reveals Conserved Redox Activity, Rachel L. Kooistra, Robin David, Ana C. Ruiz, Sean W. Powers, Kyle J. Haselton, Kaitlyn Kiernan, Andrew M. Blagborough, Ken W. Olsen, Catherine Putonti, Stefan M. Kanzok Dec 2018

Characterization Of A Protozoan Phosducin-Like Protein-3 (Phlp-3) Reveals Conserved Redox Activity, Rachel L. Kooistra, Robin David, Ana C. Ruiz, Sean W. Powers, Kyle J. Haselton, Kaitlyn Kiernan, Andrew M. Blagborough, Ken W. Olsen, Catherine Putonti, Stefan M. Kanzok

Chemistry: Faculty Publications and Other Works

We recently identified three novel thioredoxin-like genes in the genome of the protozoan parasite Plasmodium that belong to the Phosducin-like family of proteins (PhLP). PhLPs are small cytosolic proteins hypothesized to function in G-protein signaling and protein folding. Although PhLPs are highly conserved in eukaryotes from yeast to mammals, only a few representatives have been experimentally characterized to date. In addition, while PhLPs contain a thioredoxin domain, they lack a CXXC motif, a strong indicator for redox activity, and it is unclear whether members of the PhLP family are enzymatically active. Here, we describe PbPhLP-3 as the first phosducin-like protein …


Development Of Flexible Nickel-Zinc And Nickel-Iron Batteries, Xianyang Meng Dec 2018

Development Of Flexible Nickel-Zinc And Nickel-Iron Batteries, Xianyang Meng

Dissertations

The fabrication of flexible nickel-zinc batteries using a facile mixing of electroactive components for electrode preparation is presented. Polytetrafluoroethylene (PTFE) is found to be an effective binder by reducing concentration polarization, providing chemical/physical stability and enhancing flexibility. The zinc electrode containing PTFE maintains its original porous morphology even after hundreds of cycles while polymers such as PEO show morphology change. Each component, as well as the assembled flexible cells show desired flexibility and stability even under bending conditions.

The fabrication of flexible nickel-iron batteries using printable composite electrodes embedded with multiwalled carbon nanotubes (CNT) is also presented. All the metal …


Constructions Of Noble Metal Nanocrystals With Specific Crystal Facets And High Surface Area, Qiao-Li Chen, Hui-Qi Li, Ya-Qi Jiang, Zhao-Xiong Xie Dec 2018

Constructions Of Noble Metal Nanocrystals With Specific Crystal Facets And High Surface Area, Qiao-Li Chen, Hui-Qi Li, Ya-Qi Jiang, Zhao-Xiong Xie

Journal of Electrochemistry

Noble metal nanocrystals (NCs) have widespread applications in catalysis. Their catalytic performances are strongly related to the surface structures while the atomic utilization efficiency of noble metal is considerably correlated with the surface area. Thus, advantages of both specific surface structure and large surface area are highly required to show off simultaneously so as to optimize the catalytic performance and decrease the usage of noble metal. However, it seems that the two advantages are incompatible with each other in one NC since it is difficult for small NCs to keep their specific facets, while NCs with specific surface structure usually …


Fuel Cells Reactor For Chemicals And Electric Energy Cogeneration, Zhi-Lin Heng, Xiao-Zi Yuan, Yi-Mei Yin, Zi-Feng Ma Dec 2018

Fuel Cells Reactor For Chemicals And Electric Energy Cogeneration, Zhi-Lin Heng, Xiao-Zi Yuan, Yi-Mei Yin, Zi-Feng Ma

Journal of Electrochemistry

As an energy conversion device, fuel cells can efficiently convert chemical energy into electrical energy. With the developing of technology, it is used as a reactor to conduct the synthesis of high value-added chemicals while generating electrical energy. Having benefits such as mild reaction conditions, controllability of the reaction process, high selectivity of the product, as well as high efficiency of energy utilization, it is widely used in many fields such as preparation of high value-added industrial products, gas separation, water treatment, etc. This paper introduces the current trends and statuses of fuel cell reactors in the cogeneration of chemicals …


The Pilot Application Of Electrochemical Impedance Spectroscopy On Dynamic Proton Exchange Membrane Fuel Cell, Jian-Wei Guo, Jian-Long Wang Dec 2018

The Pilot Application Of Electrochemical Impedance Spectroscopy On Dynamic Proton Exchange Membrane Fuel Cell, Jian-Wei Guo, Jian-Long Wang

Journal of Electrochemistry

By analyzing Electrochemical Impedance Spectroscopy (EIS) in applications of dynamic proton exchange membrane fuel cell (PEMFC), bottlenecks which restrict EIS tool development have been pointed out in this paper. Though the high-frequency resistance in EIS is largely accepted as cell inner-resistance, this can only be applied for cell with low current. The low-frequency resistance is difficult to be realized due to its relation with mass transfer. Furthermore, the improved Randles equivalent circuits are built up preliminarily, thus, penetrating into studies for mass transfer reaction, cell operation/degeneration, and high temperature fuel cell. Inspiringly, EIS is becoming an analyzing tool for stack …


Voltage Distribution Of Self-Humidifying Air-Cooled Pemfc, Kai-Feng Tan, Wei-Rong Chen, Ming Han, Xue-Xia Zhang Dec 2018

Voltage Distribution Of Self-Humidifying Air-Cooled Pemfc, Kai-Feng Tan, Wei-Rong Chen, Ming Han, Xue-Xia Zhang

Journal of Electrochemistry

In this work, the self-adaptive characteristics of self-humidifying air-cooled PEMFC stack was investigated. The performance and the unit-cell voltage distribution of the stack were measured and analyzed through the unit-cell I-V curve fitting. The operating conditions for this experimental study were set as follows: hydrogen pressure at the anode was 2 bar, the fan power used for the reactant oxygen feed and stack cooling was at 0.3 W, and the duration and time gap of water purged from hydrogen chamber were 1 s and 10 s, respectively. The experimental results showed that the self-humidifying air-cooled PEMFC stack used for this …


Special Issue In Honor Of Professor Baolian Yi On His 80th Birthday, Society Of Electrochemistry Chinese Dec 2018

Special Issue In Honor Of Professor Baolian Yi On His 80th Birthday, Society Of Electrochemistry Chinese

Journal of Electrochemistry

No abstract provided.


Research Progress In Hydrogen Evolution Low Noble/Non-Precious Metal Catalysts Of Water Electrolysis, Yang Li, Zhao-Yan Luo, Jun-Jie Ge, Chang-Peng Liu, Wei Xing Dec 2018

Research Progress In Hydrogen Evolution Low Noble/Non-Precious Metal Catalysts Of Water Electrolysis, Yang Li, Zhao-Yan Luo, Jun-Jie Ge, Chang-Peng Liu, Wei Xing

Journal of Electrochemistry

Hydrogen energy technology with hydrogen as an energy carrier is gaining more and more attention due to its cleanliness and high energy density. Hydrogen fuel cell vehicles have been listed as one of the ultimate energy technologies in the 21st century. Among them, sustainable hydrogen production technology is a necessary prerequisite for the future development of hydrogen energy economy. Electrolyzed water technology driven by renewable resources represents an important way to support the sustainable development of hydrogen energy economy. The development and utilization of high activity, low cost hydrogen evolution catalysts is a key factor in improving the efficiency and …


Progress Of Self-Humidifying Membrane Electrode Assembly For Low Temperature Proton Exchange Membrane Fuel Cell, Bin Chi, Yue-Kun Ye, Shi-Jie Jiang, Shi-Jun Liao Dec 2018

Progress Of Self-Humidifying Membrane Electrode Assembly For Low Temperature Proton Exchange Membrane Fuel Cell, Bin Chi, Yue-Kun Ye, Shi-Jie Jiang, Shi-Jun Liao

Journal of Electrochemistry

The self/non-humidification membrane electrode assembly(SH-MEA)is an important pathway towards the self- humidification fuel cell and plays a crucial role for the large scale commercialization of low temperature proton exchange membrane fuel cell (LT-PEMFC), because it not only can reduce the volume and complexity of fuel cell system, resulting in the decrease of the cost, but also can improve the output power density of the fuel cell system. Currently, the researches on the self-humidifying MEA of LT-PEMFC mainly focus on three aspects: the preparation of self-humidification proton exchange membrane, the construction of self-humidification catalyst layer, and the construction of composite self-humidifying …


A Review Of Proton Exchange Membrane Fuel Cell Catalyst Layer By Electrospinning, Yong Liu, Han Ding, De-Chun Si, Jie Peng, Jian-Bo Zhang Dec 2018

A Review Of Proton Exchange Membrane Fuel Cell Catalyst Layer By Electrospinning, Yong Liu, Han Ding, De-Chun Si, Jie Peng, Jian-Bo Zhang

Journal of Electrochemistry

The limitation of catalyst layer for proton exchange membrane fuel cell (PEMFC) in cost, durability and performance constitutes the bottleneck for the commercialization of fuel cell vehicles. Electrospun catalyst layer, with high catalyst utilization, increased triple phase boundary (TPB) and triple phase channel (TPC), has been developed by many researchers. This paper reviews the research progress in the electrospun catalyst layer for PEMFC, combined with the author’s work. Firstly, the development progress of catalyst layer is summarized, and the catalyst layer is classified and analyzed based on its fabrication method and structure character. Next, the fabrication process, physical property characterization, …


Effects Of So2 In Air On Performance Of Direct Methanol Fuel Cell, Bin Qin, Fen-Ning Jing, Xue-Jing Sun, Gong-Quan Sun, Hai Sun Dec 2018

Effects Of So2 In Air On Performance Of Direct Methanol Fuel Cell, Bin Qin, Fen-Ning Jing, Xue-Jing Sun, Gong-Quan Sun, Hai Sun

Journal of Electrochemistry

Direct methanol fuel cells (DMFC) generally use oxygen as an oxidant. Contaminants such as sulfides and nitrides in the air can affect the performance of the DMFC. In this work, the effects of SO2 on the performance of DMFC were investigated and the mechanism of poisoning was analyzed, by means of constant current discharge curve, polarization performance curve, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). In the CV scan, the permeated methanol was oxidized at a low potential to eliminate its effect on the SO2 poisoning behavior test. The results showed that the SO2 poisoning resulted …


Fe-N Doped Hollow Carbon Nanospheres Linked By Carbon Nanotubes For Oxygen Reduction Reaction, Ya-Lin Zhang, Chi Chen, Liang-Liang Zou, Zhi-Qing Zou, Hui Yang Dec 2018

Fe-N Doped Hollow Carbon Nanospheres Linked By Carbon Nanotubes For Oxygen Reduction Reaction, Ya-Lin Zhang, Chi Chen, Liang-Liang Zou, Zhi-Qing Zou, Hui Yang

Journal of Electrochemistry

The development of non-precious metal catalysts for oxygen reduction reaction (ORR) is essential for large-scale application of proton exchange membrane fuel cells. Herein, we present the in situ formed Fe-N doped hollow carbon nanospheres linked by carbon nanotubes composite, synthesized by using ZIF-8 as sacrificed template to form polydopamine (PDA) hollow nanospheres, followed by complexing with FeCl3, high temperature heat-treatment and NH3-etching. ZIF-8 was gradually decomposed simultaneously with PDA coating due to the loss of Zn2+ grabbed by PDA. NH3 etching resulted in the improved surface area, while the reducibility of NH3 resulted in …


Facile Synthesis Of Pt-Cu Alloy Nanodendrites As High-Performance Electrocatalysts For Oxygen Reduction Reaction, Liu-Xuan Luo, Guang-Hua Wei, Shui-Yun Shen, Feng-Juan Zhu, Chang-Chun Ke, Xiao-Hui Yan, Jun-Liang Zhang Dec 2018

Facile Synthesis Of Pt-Cu Alloy Nanodendrites As High-Performance Electrocatalysts For Oxygen Reduction Reaction, Liu-Xuan Luo, Guang-Hua Wei, Shui-Yun Shen, Feng-Juan Zhu, Chang-Chun Ke, Xiao-Hui Yan, Jun-Liang Zhang

Journal of Electrochemistry

Structures and compositions have significant effects on the catalytic properties of nanomaterials. Herein, a facile etching-based method was employed to synthesize Pt-Cu nanodendrites (NDs) with uniform and homogeneous alloy structures for enhancing oxygen reduction reaction (ORR). The formation of dendritic morphology was ascribed to the etching effect caused by the oxidative etchants of the Br-/O2 pair. The atomic ratio of Pt/Cu in Pt-Cu NDs could be easily tuned by altering the ratio of the Pt/Cu precursors, without deteriorating the dendritic morphology. The most active carbon-supported Pt1Cu1 NDs (Pt1Cu1 NDs/C) exhibited the …


Acid Treated Carbon As Anodic Electrocatalysts Toward Direct Ascorbic Acid Alkaline Membrane Fuel Cells, He-Mu Chen, Chen-Xi Qiu, Yuan-Yuan Cong, Hui-Yuan Liu, Zi-Hui Zhai, Yu-Jiang Song Dec 2018

Acid Treated Carbon As Anodic Electrocatalysts Toward Direct Ascorbic Acid Alkaline Membrane Fuel Cells, He-Mu Chen, Chen-Xi Qiu, Yuan-Yuan Cong, Hui-Yuan Liu, Zi-Hui Zhai, Yu-Jiang Song

Journal of Electrochemistry

In order to improve the hydrophilicity and electrocatalytic activity, commercial carbon black (BP 2000) was subjected to acid treatment to obtain acid-treated carbon (ATC). The generation of rich oxygen-containing groups on the surface of the ATC was proved by X-ray photoelectron spectra (XPS), Fourier transform-infra red spectra (FTIR), thermogravimetric analysis (TG) and contact angle measurement. UV-vis spectra were firstly recorded to calculate activation energy (Ea) of ascorbic acid (AA) chemical oxidation in alkaline conditions by oxygen in air and the Ea value was determined to be 37.1 kJ·mol-1. Additionally, electrochemical impedance spectra (EIS) were used to evaluate unprecedented …


Durability Performance Of The High-Power Fuel Cell System, Ke-Yong Wang, Wei-Yu Shi, Ren-Fang Wang, Jia Liu, Zhong-Jun Hou Dec 2018

Durability Performance Of The High-Power Fuel Cell System, Ke-Yong Wang, Wei-Yu Shi, Ren-Fang Wang, Jia Liu, Zhong-Jun Hou

Journal of Electrochemistry

Fuel cell durability is the crucial challenge in fuel cell vehicle, and the lifetime of more than 5000 hours is believed to be necessary for vehicle application. Few works on durability test of the full fuel cell system have been reported. In this work, the long lifetime HySYS-30 fuel cell system was developed in Sunrise Power based on the improved MEA durability and system control strategy. The durability performance of the system was investigated under vehicle duty cycle for more than 6000 hours, and only 8.1% performance loss was observed, implying that the durability of HySYS-30 fuel cell system could …


Fuel Cell Performance Curve After Mea Optimization Structural Optimization Of Low Pt Membrane Electrode Assembly, Yan Rao, Shang Li, Fen Zhou, Tian Tian, Qing Zhong, Zhao-Hui Wan, Jin-Ting Tan, Mu Pan Dec 2018

Fuel Cell Performance Curve After Mea Optimization Structural Optimization Of Low Pt Membrane Electrode Assembly, Yan Rao, Shang Li, Fen Zhou, Tian Tian, Qing Zhong, Zhao-Hui Wan, Jin-Ting Tan, Mu Pan

Journal of Electrochemistry

Membrane electrode assemblies (MEAs) are the key component of proton exchange membrane fuel cell. For a long time, much attention has been paid to develop MEA technology. At present, the research, development and industrialization of fuel cell has entered a new era. More strict requirements for MEA, especially for the reduction of Pt loading with a challenging target of 0.125 mg·W-1 have to be met. In this paper, the performance losses under low Pt loading are analyzed in terms of activation polarization, ohm polarization and mass-transfer polarization. It is proposed that research should be focused on the activity of …


Recent Progress In Pt-Based Catalysts For Oxygen Reduction Reaction, Jing Li, Xin Feng, Zi-Dong Wei Dec 2018

Recent Progress In Pt-Based Catalysts For Oxygen Reduction Reaction, Jing Li, Xin Feng, Zi-Dong Wei

Journal of Electrochemistry

One major challenge for a large-scale commercialization of the proton-exchange membrane fuel cells (PEMFCs) technologies that enable a shift to ‘zero-emission’ personal transportation, is the expensive and unstable Pt catalysts, which are mainly used to catalyze the sluggish kinetics of the oxygen reduction reaction (ORR) occurred on the air electrode of PEMFCs. Many research works have targets to improve the stability of Pt-based catalysts and to construct Pt/transitional metal alloys with low Pt loading amount. Herein, we provide a minireview for the Pt-based ORR catalysts based on our recent work, which covers a brief background introduction, the stability improvement of …


Caging Porous Co-N-C Nanocomposites In 3d Graphene As Active And Aggregation-Resistant Electrocatalyst For Oxygen Reduction Reaction, Lu-Yang Xiu, Meng-Zhou Yu, Peng-Ju Yang, Zhi-Yu Wang, Jie-Shan Qiu Dec 2018

Caging Porous Co-N-C Nanocomposites In 3d Graphene As Active And Aggregation-Resistant Electrocatalyst For Oxygen Reduction Reaction, Lu-Yang Xiu, Meng-Zhou Yu, Peng-Ju Yang, Zhi-Yu Wang, Jie-Shan Qiu

Journal of Electrochemistry

Oxygen reduction reaction (ORR) is the cornerstone reaction of many renewable energy technologies such as fuel cells and rechargeable metal-air batteries. The Pt-based electrocatalysts exhibit the highest activity toward ORR, but their large implementation is greatly prohibiting by unaffordable cost and inferior durability. During electrode manufacturing and electrochemical reaction, severe aggregation of catalyst nanoparticles induced by size effect further limits the operational performance of electrocatalysts. We report a new strategy for fabrication of active and aggregation-resistant ORR electrocatalyst by caging metal-organic frameworks derived Co-N-C nanocomposites in permeable and porous 3D graphene cages via sprayed drying the mixed colloids of ZIF-67 …


Palladium Adatoms On Gold Nanoparticles As Electrocatalysts For Ethanol Electro-Oxidation In Alkaline Solutions, Hui-Mei Chen, Shang-Qian Zhu, Jia-Le Huang, Min-Hua Shao Dec 2018

Palladium Adatoms On Gold Nanoparticles As Electrocatalysts For Ethanol Electro-Oxidation In Alkaline Solutions, Hui-Mei Chen, Shang-Qian Zhu, Jia-Le Huang, Min-Hua Shao

Journal of Electrochemistry

Palladium (Pd) is a good catalyst for ethanol electro-oxidation in alkaline solutions. The activity of Pd is further improved in this study by modifying the gold (Au) nanoparticles with Pd adatoms using a simple spontaneous deposition process. The Pd overlayer on the Au core (Au@Pd) is un-uniform with some Au atoms exposed to the electrolyte. The activity of Au@Pd/C toward ethanol oxidation reaction (EOR) is much higher than that of Pd/C in an alkaline solution. The peak current density of Au@Pd/C is 4.6 times higher than that of Pd/C with a 100 mV lower onset potential. The enhanced activity may …


Pd/C Catalysts For Co2 Electroreduction To Co:Pd Loading Effect, Dun-Feng Gao, Cheng-Cheng Yan, Guo-Xiong Wang, Xin-He Bao Dec 2018

Pd/C Catalysts For Co2 Electroreduction To Co:Pd Loading Effect, Dun-Feng Gao, Cheng-Cheng Yan, Guo-Xiong Wang, Xin-He Bao

Journal of Electrochemistry

Nanostructured heterogeneous catalysts have been widely used in the electrochemical carbon dioxide (CO2) reduction reaction (CO2RR), which can simultaneously achieve the electrocatalytic conversion of CO2 to fuels and the storage of renewable energy sources. Carbon supported palladium nanoparticles (Pd/C) catalysts have been previously reported to show excellent CO2RR performance. However, the crucial role of the metal loading in supported electrocatalysts has been rarely reported. In this work, we study the Pd loading effect on the structure of Pd/C catalysts as well as their activity and selectivity of CO2RR to CO. The …


Morphological Control Of Ptcu2 Octahedron And Oxygen Reduction Electrocatalytic Performance Of Ptcu For Fuel Cell, Long-Sheng Cao, Lei Wan, Zhi-Gang Shao, Hong-Mei Yu, Ming Hou, Bao-Lian Yi Dec 2018

Morphological Control Of Ptcu2 Octahedron And Oxygen Reduction Electrocatalytic Performance Of Ptcu For Fuel Cell, Long-Sheng Cao, Lei Wan, Zhi-Gang Shao, Hong-Mei Yu, Ming Hou, Bao-Lian Yi

Journal of Electrochemistry

Platinum acetylacetonate (Pt(acac)2) and copper acetylacetonate (Cu(acac)2) were co-reduced to prepare PtCu2 octahedron alloy catalyst in N,N-dimethylformamiade by solvothermal method. The PtCu2 showed lattice compression, and high ratio of non-oxidized Pt with high electronic binding energy. All those structural features contributed to weak adsorption strength of oxygen species on Pt and lower d-band centre position. The influence of structure-directing agent on morphology of PtCu alloy was systematically studied. In the half cell test, as a result of the uniform morphology and regular octahedron of PtCu2 formed, the mass activity and area specific activity …


Stabilization Strategies Of Pt Catalysts Forproton Exchange Membrane Fuel Cells, Da-Ping He, Shi-Chun Mu Dec 2018

Stabilization Strategies Of Pt Catalysts Forproton Exchange Membrane Fuel Cells, Da-Ping He, Shi-Chun Mu

Journal of Electrochemistry

The low service lifetime of proton exchange membrane fuel cells (PEMFCs) is the main bottleneck for their commercial applications. One of the main factors is that the expensive metal Pt catalyst is easy to degradation under the harsh working environment of PEMFC (such as variable voltage, strong acidity, gas-liquid two-phase flow), which leads to the inevitable decay of the catalytic performance, thus, seriously restricting the lifetime of PEMFC. Therefore, the electrochemical stability of Pt-based electrocatalysts has become an important and hot topic to improve the PEMFC lifetime. In this paper, we review the recent development in enhancing the stability of …


Vibrational Analysis Of A Rate-Slowing Conformational Kinetic Isotope Effect, O. Maduka Ogba, Zichen Liu, Daniel J. O'Leary Dec 2018

Vibrational Analysis Of A Rate-Slowing Conformational Kinetic Isotope Effect, O. Maduka Ogba, Zichen Liu, Daniel J. O'Leary

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

An enthalpy-entropy approach to analyzing a rate-slowing conformational kinetic isotope effect (CKIE) in a deuterated doubly-bridged biaryl system is described. The computed isotope effect (kH/kD = 1.075, 368 K) agrees well with the measured value (kH/kD = 1.06, 368 K). The rateslowing (normal isotope effect) nature of the computed CKIE is shown to originate from a vibrational entropy contribution defined by the twenty lowest frequency normal modes in the ground state and transition state structures. This normal entropy contribution is offset by an inverse vibrational enthalpy contribution, which also arises from the twenty lowest frequency normal modes. Zero point vibrational …


Controls On Phosphorus Export From An Agricultural Watershed: Amsden Brook, Fort Fairfield, Maine Usa., Gregory J. Mcdonald Dec 2018

Controls On Phosphorus Export From An Agricultural Watershed: Amsden Brook, Fort Fairfield, Maine Usa., Gregory J. Mcdonald

Electronic Theses and Dissertations

This study explores the sources and mechanisms of phosphorus (P) mobilization during base flow within the Amsden Brook watershed, Fort Fairfield, Maine, USA. Amsden Brook is an agriculturally dominated watershed drained by a spring-fed and perennial first- to second-order stream. We characterized the P concentrations within the watershed to investigate connections between soils, stream sediment, surface water, and groundwater. Waters were monitored monthly during the 2017 snow-free period for temperature, pH, dissolved oxygen, conductivity, soluble reactive P (SRP), total P, strong acid anions, strong base cations, dissolved organic carbon (DOC), Al, Fe, and Mn. Phosphorus speciation within soils and sediment …


Atom-Specific Activation In Co Oxidation, Simon Schreck, Elias Diesen, Jerry Larue, Hirohito Ogasawara, Kess Marks, Dennis Nordlund, Matthew Weston, Martin Beye, Filippo Cavalca, Fivos Perakis, Jonas Sellberg, André Eilert, Kyung Hwan Kim, Giacomo Coslovich, Ryan Coffee, Jacek Krzywinski, Alex Reid, Stefan Moeller, Alberto Lutman, Henrik Öström, Lars G. M. Pettersson, Anders Nilsson Dec 2018

Atom-Specific Activation In Co Oxidation, Simon Schreck, Elias Diesen, Jerry Larue, Hirohito Ogasawara, Kess Marks, Dennis Nordlund, Matthew Weston, Martin Beye, Filippo Cavalca, Fivos Perakis, Jonas Sellberg, André Eilert, Kyung Hwan Kim, Giacomo Coslovich, Ryan Coffee, Jacek Krzywinski, Alex Reid, Stefan Moeller, Alberto Lutman, Henrik Öström, Lars G. M. Pettersson, Anders Nilsson

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We report on atom-specific activation of CO oxidation on Ru(0001) via resonant X-ray excitation. We show that resonant 1s core-level excitation of atomically adsorbed oxygen in the co-adsorbed phase of CO and oxygen directly drives CO oxidation. We separate this direct resonant channel from indirectly driven oxidation via X-ray induced substrate heating. Based on density functional theory calculations, we identify the valence-excited state created by the Auger decay as the driving electronic state for direct CO oxidation. We utilized the fresh-slice multi-pulse mode at the Linac Coherent Light Source that provided time-overlapped and 30 fs delayed pairs of soft …


Nano-Based Systems And Biomacromolecules As Carriers For Metallodrugs In Anticancer Therapy, Mina Poursharifi, Marek T. Wlodarczyk, Aneta J. Mieszawska Dec 2018

Nano-Based Systems And Biomacromolecules As Carriers For Metallodrugs In Anticancer Therapy, Mina Poursharifi, Marek T. Wlodarczyk, Aneta J. Mieszawska

Publications and Research

Since the discovery of cisplatin and its potency in anticancer therapy, the development of metallodrugs has been an active area of research. The large choice of transition metals, oxidation states, coordinating ligands, and different geometries, allows for the design of metal-based agents with unique mechanisms of action. Many metallodrugs, such as titanium, ruthenium, gallium, tin, gold, and copper-based complexes have been found to have anticancer activities. However, biological application of these agents necessitates aqueous solubility and low systemic toxicity. This minireview highlights the emerging strategies to facilitate the in vivo application of metallodrugs, aimed at enhancing their solubility and bioavailability, …


Development And Thermodynamic Analysis Of An Integrated Mild/Partial Gasification Combined Cycle (Impgc) Under Green And Brown Field Conditions With And Without Carbon Capture, Henry A. Long Iii Dec 2018

Development And Thermodynamic Analysis Of An Integrated Mild/Partial Gasification Combined Cycle (Impgc) Under Green And Brown Field Conditions With And Without Carbon Capture, Henry A. Long Iii

University of New Orleans Theses and Dissertations

Coal is a very prominent energy source in the world, but it is environmentally unattractive due to its high sulfur and ash content as well as its alleged contribution towards climate change, but it is affordable, abundant, and has high energy content. Thus, utilizing coal in a cleaner and more efficient way has become necessary. One promising clean coal technology involves fully gasifying coal into synthesis gas, cleaning it, and feeding it into a high-efficiency combined cycle, such as an Integrated Gasification Combined Cycle (IGCC). Inspired by the recent success of warn gas cleanup (WGCU), mild and partial gasification are …