Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 320

Full-Text Articles in Physical Sciences and Mathematics

Solution-Processed Flexible Broadband Zno Photodetector Modified By Ag Nanoparticles, N. P. Klochko, K. S. Klepikova, I. V. Khrypunova, V. R. Kopach, I. I. Tyukhov, S. I. Petrushenko, S. V. Dukarov, V. M. Sukhov, M. V. Kirichenko, A. L. Khrypunova Dec 2021

Solution-Processed Flexible Broadband Zno Photodetector Modified By Ag Nanoparticles, N. P. Klochko, K. S. Klepikova, I. V. Khrypunova, V. R. Kopach, I. I. Tyukhov, S. I. Petrushenko, S. V. Dukarov, V. M. Sukhov, M. V. Kirichenko, A. L. Khrypunova

Faculty Research, Scholarly, and Creative Activity

In this work, we present flexible broadband photodetectors (PDs) fabricated by a deposition of nanostructured zinc oxide (ZnO) films on polyimide (PI) substrates by using cheap and scalable aqueous method Successive Ionic Layer Adsorption and Reaction (SILAR). In order to increase the long-wavelength absorption of the nanostructured ZnO layer, we created its intrinsic defects, including oxygen vacancies by post-treatment at 300 °C in vacuum and thus the light-sensitive material ZnO/PI was obtained. Then we applied silver nanoparticles (Ag NPs) from a silver sol onto a nanostructured ZnO film, which were visualized using SEM in the form of spheres up to …


Computational Astronomy: Classification Of Celestial Spectra Using Machine Learning Techniques, Gayatri Milind Hungund May 2020

Computational Astronomy: Classification Of Celestial Spectra Using Machine Learning Techniques, Gayatri Milind Hungund

Master's Projects

Lightyears beyond the Planet Earth there exist plenty of unknown and unexplored stars and Galaxies that need to be studied in order to support the Big Bang Theory and also make important astronomical discoveries in quest of knowing the unknown. Sophisticated devices and high-power computational resources are now deployed to make a positive effort towards data gathering and analysis. These devices produce massive amount of data from the astronomical surveys and the data is usually in terabytes or petabytes. It is exhaustive to process this data and determine the findings in short period of time. Many details can be missed …


The Distribution Of Ultra-Diffuse And Ultra-Compact Galaxies In The Frontier Fields, Steven Janssens, Roberto Abraham, Jean Brodie, Duncan Forbes, Aaron Romanowsky Dec 2019

The Distribution Of Ultra-Diffuse And Ultra-Compact Galaxies In The Frontier Fields, Steven Janssens, Roberto Abraham, Jean Brodie, Duncan Forbes, Aaron Romanowsky

Faculty Publications

Large low-surface-brightness galaxies have recently been found to be abundant in nearby galaxy clusters. In this paper, we investigate these ultra-diffuse galaxies (UDGs) in the six Hubble Frontier Fields galaxy clusters: A2744, MACS J0416.1−2403, MACS J0717.5+3745, MACS J1149.5+2223, AS1063, and A370. These are the most massive (1–3 × 1015 M ⊙) and distant (0.308 < z < 0.545) systems in which this class of galaxy has yet been discovered. We estimate that the clusters host of the order of ~200–1400 UDGs inside the virial radius (R 200), consistent with the UDG abundance–halo-mass relation found in the local universe, and suggest that UDGs may be formed in clusters. Within each cluster, however, we find that UDGs are not evenly distributed. Instead their projected spatial distributions are lopsided, and they are deficient in the regions of highest mass density as traced by gravitational lensing. While the deficiency of UDGs in central regions is not surprising, the lopsidedness is puzzling. The UDGs, and their lopsided spatial distributions, may be associated with known substructures late in their infall into the clusters, meaning that we find evidence both for formation of UDGs in clusters and for UDGs falling into clusters. We also investigate the ultra-compact dwarfs (UCDs) residing in the clusters, and find that the spatial distributions of UDGs and UCDs appear anticorrelated. Around 15% of UDGs exhibit either compact nuclei or nearby point sources. Taken together, these observations provide additional evidence for a picture in which at least some UDGs are destroyed in dense cluster environments and leave behind a residue of UCDs.


Tidal Destruction In A Low-Mass Galaxy Environment: The Discovery Of Tidal Tails Around Ddo 44, Jeffrey Carlin, Christopher Garling, Annika Peter, Denija Crnojević, Duncan Forbes, Jonathan Hargis, Burçin Mutlu-Pakdil, Ragadeepika Pucha, Aaron Romanowsky, David Sand, Kristine Spekkens, Jay Strader, Beth Willman Nov 2019

Tidal Destruction In A Low-Mass Galaxy Environment: The Discovery Of Tidal Tails Around Ddo 44, Jeffrey Carlin, Christopher Garling, Annika Peter, Denija Crnojević, Duncan Forbes, Jonathan Hargis, Burçin Mutlu-Pakdil, Ragadeepika Pucha, Aaron Romanowsky, David Sand, Kristine Spekkens, Jay Strader, Beth Willman

Faculty Publications

We report the discovery of a 1° (~50 kpc) long stellar tidal stream emanating from the dwarf galaxy DDO 44, a likely satellite of Local Volume galaxy NGC 2403 located ~70 kpc in projection from its companion. NGC 2403 is a roughly Large Magellanic Cloud (LMC) stellar-mass galaxy 3 Mpc away, residing at the outer limits of the M81 group. We are mapping a large region around NGC 2403 as part of our Magellanic Analogs' Dwarf Companions and Stellar Halos survey, reaching point-source depths (90% completeness) of (g, i) = (26.5, 26.2). Density maps of old, metal-poor RGB stars reveal …


Spatially Resolved Stellar Kinematics Of The Ultra-Diffuse Galaxy Dragonfly 44. Ii. Constraints On Fuzzy Dark Matter, Asher Wasserman, Pieter Van Dokkum, Aaron Romanowsky, Jean Brodie, Shany Danieli, Duncan Forbes, Roberto Abraham, Christopher Martin, Matt Matuszewski, Alexa Villaume, John Tamanas, Stefano Profumo Nov 2019

Spatially Resolved Stellar Kinematics Of The Ultra-Diffuse Galaxy Dragonfly 44. Ii. Constraints On Fuzzy Dark Matter, Asher Wasserman, Pieter Van Dokkum, Aaron Romanowsky, Jean Brodie, Shany Danieli, Duncan Forbes, Roberto Abraham, Christopher Martin, Matt Matuszewski, Alexa Villaume, John Tamanas, Stefano Profumo

Faculty Publications

Given the absence of directly detected dark matter (DM) as weakly interacting massive particles, there is strong interest in the possibility that DM is an ultralight scalar field, here denoted as "fuzzy" DM. Ultra-diffuse galaxies, with the sizes of giant galaxies and the luminosities of dwarf galaxies, have a wide range of DM halo masses, thus providing new opportunities for exploring the connections between galaxies and their DM halos. Following up on new integral field unit spectroscopic observations and dynamics modeling of the DM-dominated ultra-diffuse galaxy Dragonfly 44 in the outskirts of the Coma Cluster, we present models of fuzzy …


Dark Matter And No Dark Matter: On The Halo Mass Of Ngc 1052, Duncan Forbes, Adebusola Alabi, Jean Brodie, Aaron Romanowsky Nov 2019

Dark Matter And No Dark Matter: On The Halo Mass Of Ngc 1052, Duncan Forbes, Adebusola Alabi, Jean Brodie, Aaron Romanowsky

Faculty Publications

The NGC 1052 group, and in particular the discovery of two ultra-diffuse galaxies with very low internal velocity dispersions, has been the subject of much attention recently. Here we present radial velocities for a sample of 77 globular clusters associated with NGC 1052 obtained on the Keck telescope. Their mean velocity and velocity dispersion are consistent with that of the host galaxy. Using a simple tracer mass estimator, we infer the enclosed dynamical mass and dark matter fraction of NGC 1052. Extrapolating our measurements with a Navarro–Frenk–White (NFW) mass profile we infer a total halo mass of 6.2(±0.2) × 1012 …


Formation Of Ultra-Diffuse Galaxies In The Field And In Galaxy Groups, Fangzhou Jiang, Avishai Dekel, Jonathan Freundlich, Aaron Romanowsky, Aaron Dutton, Andrea Macciò, Arianna Di Cintio Aug 2019

Formation Of Ultra-Diffuse Galaxies In The Field And In Galaxy Groups, Fangzhou Jiang, Avishai Dekel, Jonathan Freundlich, Aaron Romanowsky, Aaron Dutton, Andrea Macciò, Arianna Di Cintio

Faculty Publications

We study ultra-diffuse galaxies (UDGs) in zoom in cosmological simulations, seeking the origin of UDGs in the field versus galaxy groups. We find that while field UDGs arise from dwarfs in a characteristic mass range by multiple episodes of supernova feedback (Di Cintio et al.), group UDGs may also form by tidal puffing up and they become quiescent by ram-pressure stripping. The field and group UDGs share similar properties, independent of distance from the group centre. Their dark-matter haloes have ordinary spin parameters and centrally dominant dark-matter cores. Their stellar components tend to have a prolate shape with a Sérsic …


Hyper Wide Field Imaging Of The Local Group Dwarf Irregular Galaxy Ic 1613: An Extended Component Of Metal-Poor Stars, Ragadeepika Pucha, Jeffrey Carlin, Beth Willman, Jay Strader, David Sand, Keith Bechtol, Jean Brodie, Denija Crnojević, Duncan Forbes, Christopher Garling, Jonathan Hargis, Annika Peter, Aaron Romanowsky Jul 2019

Hyper Wide Field Imaging Of The Local Group Dwarf Irregular Galaxy Ic 1613: An Extended Component Of Metal-Poor Stars, Ragadeepika Pucha, Jeffrey Carlin, Beth Willman, Jay Strader, David Sand, Keith Bechtol, Jean Brodie, Denija Crnojević, Duncan Forbes, Christopher Garling, Jonathan Hargis, Annika Peter, Aaron Romanowsky

Faculty Publications

Stellar halos offer fossil evidence for hierarchical structure formation. Since halo assembly is predicted to be scale-free, stellar halos around low-mass galaxies constrain properties such as star formation in the accreted subhalos and the formation of dwarf galaxies. However, few observational searches for stellar halos in dwarfs exist. Here we present gi photometry of resolved stars in isolated Local Group dwarf irregular galaxy IC 1613 (M sstarf ~ 108 M ⊙). These Subaru/Hyper Suprime-Cam observations are the widest and deepest of IC 1613 to date. We measure surface density profiles of young main-sequence, intermediate to old red giant branch, and …


Spatially Resolved Stellar Kinematics Of The Ultra-Diffuse Galaxy Dragonfly 44. I. Observations, Kinematics, And Cold Dark Matter Halo Fits, Pieter Van Dokkum, Asher Wasserman, Shany Danieli, Roberto Abraham, Jean Brodie, Charlie Conroy, Duncan Forbes, Christopher Martin, Matt Matuszewski, Aaron Romanowsky, Alexa Villaume Jul 2019

Spatially Resolved Stellar Kinematics Of The Ultra-Diffuse Galaxy Dragonfly 44. I. Observations, Kinematics, And Cold Dark Matter Halo Fits, Pieter Van Dokkum, Asher Wasserman, Shany Danieli, Roberto Abraham, Jean Brodie, Charlie Conroy, Duncan Forbes, Christopher Martin, Matt Matuszewski, Aaron Romanowsky, Alexa Villaume

Faculty Publications

We present spatially resolved stellar kinematics of the well-studied ultra-diffuse galaxy (UDG) Dragonfly 44, as determined from 25.3 hr of observations with the Keck Cosmic Web Imager. The luminosity-weighted dispersion within the half-light radius is ${\sigma }_{1/2}={33}_{-3}^{+3}$ km s−1, lower than what we had inferred before from a DEIMOS spectrum in the Hα region. There is no evidence for rotation, with ${V}_{\max }/\langle \sigma \rangle \lt 0.12$ (90% confidence) along the major axis, in possible conflict with models where UDGs are the high-spin tail of the normal dwarf galaxy distribution. The spatially averaged line profile is more peaked than a …


Lanczos-Boosted Numerical Linked-Cluster Expansion For Quantum Lattice Models, Krishnakumar Bhattaram, Ehsan Khatami Jul 2019

Lanczos-Boosted Numerical Linked-Cluster Expansion For Quantum Lattice Models, Krishnakumar Bhattaram, Ehsan Khatami

Faculty Research, Scholarly, and Creative Activity

Numerical linked-cluster expansions allow one to calculate finite-temperature properties of quantum lattice models directly in the thermodynamic limit through exact solutions of small clusters. However, full diagonalization is often the limiting factor for these calculations. Here we show that a partial diagonalization of the largest clusters in the expansion using the Lanczos algorithm can be as useful as full diagonalization for the method while mitigating some of the time and memory issues. As test cases, we consider the frustrated Heisenberg model on the checkerboard lattice and the Fermi-Hubbard model on the square lattice. We find that our approach can surpass …


New Constraints On Early-Type Galaxy Assembly From Spectroscopic Metallicities Of Globular Clusters In M87, Alexa Villaume, Aaron Romanowsky, Jean Brodie, Jay Strader Jul 2019

New Constraints On Early-Type Galaxy Assembly From Spectroscopic Metallicities Of Globular Clusters In M87, Alexa Villaume, Aaron Romanowsky, Jean Brodie, Jay Strader

Faculty Publications

The observed characteristics of globular cluster (GC) systems, such as metallicity distributions, are commonly used to place constraints on galaxy formation models. However, obtaining reliable metallicity values is particularly difficult because of our limited means to obtain high quality spectroscopy of extragalactic GCs. Often, "color–metallicity relations" are invoked to convert easier-to-obtain photometric measurements into metallicities, but there is no consensus on what form these relations should take. In this paper we make use of multiple photometric data sets and iron metallicity values derived from applying full-spectrum stellar population synthesis models to deep Keck/LRIS spectra of 177 GCs centrally located around …


Spatially Resolved Stellar Populations And Kinematics With Kcwi: Probing The Assembly History Of The Massive Early-Type Galaxy Ngc 1407, Anna Ferré-Mateu, Duncan Forbes, Richard Mcdermid, Aaron Romanowsky, Jean Brodie Jun 2019

Spatially Resolved Stellar Populations And Kinematics With Kcwi: Probing The Assembly History Of The Massive Early-Type Galaxy Ngc 1407, Anna Ferré-Mateu, Duncan Forbes, Richard Mcdermid, Aaron Romanowsky, Jean Brodie

Faculty Publications

Using the newly commissioned Keck Cosmic Web Imager (KCWI) instrument on the Keck II telescope, we analyze the stellar kinematics and stellar populations of the well-studied massive early-type galaxy (ETG) NGC 1407. We obtained high signal-to-noise integral field spectra for a central and an outer (around one effective radius toward the southeast direction) pointing with integration times of just 600 s and 2400 s, respectively. We confirm the presence of a kinematically distinct core also revealed by VLT/MUSE data of the central regions. While NGC 1407 was previously found to have stellar populations characteristic of massive ETGs (with radially constant …


Still Missing Dark Matter: Kcwi High-Resolution Stellar Kinematics Of Ngc1052-Df2, Shany Danieli, Pieter Van Dokkum, Charlie Conroy, Roberto Abraham, Aaron Romanowsky Apr 2019

Still Missing Dark Matter: Kcwi High-Resolution Stellar Kinematics Of Ngc1052-Df2, Shany Danieli, Pieter Van Dokkum, Charlie Conroy, Roberto Abraham, Aaron Romanowsky

Faculty Publications

The velocity dispersion of the ultra diffuse galaxy NGC1052-DF2 was found to be σgc = 7.8 +5.2/-2.2 km s−1, much lower than expected from the stellar mass–halo mass relation and nearly identical to the expected value from the stellar mass alone. This result was based on the radial velocities of 10 luminous globular clusters that were assumed to be associated with the galaxy. A more precise measurement is possible from high-resolution spectroscopy of the diffuse stellar light. Here we present an integrated spectrum of the diffuse light of NGC1052-DF2 obtained with the Keck Cosmic Web Imager (KCWI), with an instrumental …


Extreme Chemical Abundance Ratio Suggesting An Exotic Origin For An Ultradiffuse Galaxy, Ignacio Martín-Navarro, Aaron Romanowsky, Jean Brodie, Anna Ferr´E-Mateu, Adebusola Alabi, Duncan Forbes, Margarita Sharina, Alexa Villaume, Viraj Pandya, David Martinez-Delgado Apr 2019

Extreme Chemical Abundance Ratio Suggesting An Exotic Origin For An Ultradiffuse Galaxy, Ignacio Martín-Navarro, Aaron Romanowsky, Jean Brodie, Anna Ferr´E-Mateu, Adebusola Alabi, Duncan Forbes, Margarita Sharina, Alexa Villaume, Viraj Pandya, David Martinez-Delgado

Faculty Publications

Ultradiffuse galaxies (UDGs) are a population of extended galaxies but with relatively low luminosities. The origin of these objects remains unclear, largely due to the observational challenges of the low surface brightness Universe. We present here a detailed stellar population analysis of a relatively isolated UDG, DGSAT I, based on spectroscopic data from the Keck Cosmic Web Imager integral field unit. The star formation history of DGSAT I seems to be extended, with a mean luminosity-weighted age of ∼3 Gyr, in agreement with previous photometric studies. However, we find a very high [Mg/Fe] abundance ratio, which is extreme even in …


A Second Galaxy Missing Dark Matter In The Ngc 1052, Pieter Van Dokkum, Shany Danieli, Roberto Abraham, Charlie Conroy, Aaron Romanowsky Mar 2019

A Second Galaxy Missing Dark Matter In The Ngc 1052, Pieter Van Dokkum, Shany Danieli, Roberto Abraham, Charlie Conroy, Aaron Romanowsky

Faculty Publications

The ultra-diffuse galaxy NGC1052-DF2 has a very low velocity dispersion, indicating that it has little or no dark matter. Here we report the discovery of a second galaxy in this class, residing in the same group. NGC1052-DF4 closely resembles NGC1052-DF2 in terms of its size, surface brightness, and morphology; has a similar distance of Dsbf =  19.9 2.8 Mpc; and also has a population of luminous globular clusters extending out to 7 kpc from the center of the galaxy. Accurate radial velocities of the diffuse galaxy light and seven of the globular clusters were obtained with the Low Resolution …


A Second Galaxy Missing Dark Matter In The Ngc 1052 Group, Pieter Van Dokkum, Shany Danieli, Roberto Abraham, Charlie Conroy, Aaron Romanowsky Mar 2019

A Second Galaxy Missing Dark Matter In The Ngc 1052 Group, Pieter Van Dokkum, Shany Danieli, Roberto Abraham, Charlie Conroy, Aaron Romanowsky

Faculty Publications

The ultra-diffuse galaxy NGC1052-DF2 has a very low velocity dispersion, indicating that it has little or no dark matter. Here we report the discovery of a second galaxy in this class, residing in the same group. NGC1052-DF4closely resembles NGC1052-DF2 in terms of its size, surface brightness, and morphology; has a similar distance of Dsbf = 19.9 +/- 2.8 Mpc; and also has a population of luminous globular clusters extending out to >7 kpc from the center of the galaxy. Accurate radial velocities of the diffuse galaxy light and seven of the globular clusters were obtained with the Low Resolution Imaging …


Erratum: “The Sluggs Survey: A Catalog Of Globular Cluster Radial Velocities” (2017, Aj, 153, 114), Duncan Forbes, Adebusola Alabi, Jean Brodie, Aaron Romanowsky, Jay Strader, Caroline Foster, Christopher Usher, Lee Spitler, Sabine Bellstedt, Nicola Pastorello, Sreeja Kartha, Zach Jennings, Alexa Villaume, Asher Wasserman, Vincenzo Pota Mar 2019

Erratum: “The Sluggs Survey: A Catalog Of Globular Cluster Radial Velocities” (2017, Aj, 153, 114), Duncan Forbes, Adebusola Alabi, Jean Brodie, Aaron Romanowsky, Jay Strader, Caroline Foster, Christopher Usher, Lee Spitler, Sabine Bellstedt, Nicola Pastorello, Sreeja Kartha, Zach Jennings, Alexa Villaume, Asher Wasserman, Vincenzo Pota

Faculty Publications

We would like to point out to the reader that the catalog of globular cluster (GC) radial velocities (listed in Table 5) still contains some multiple entries. In such cases GCs were observed more than once and are recorded in Table 5 with a unique GC ID, along with their coordinates and radial velocity measurement. If the reader wishes to exclude, or average, multiple measurements then GCs within one spatial pixel (i.e., 0.119 arcsec) in R.A. and decl. can be identified. This would include two dozen GCs in the galaxies NGC 720, 1407, 2768, 3608, 4365, 4459, 4474, and 4697. …


Ground State Phase Diagram Of The One-Dimensional Bose-Hubbard Model From Restricted Boltzmann Machines, Kristopher Mcbrian, Giuseppe Carleo, Ehsan Khatami Jan 2019

Ground State Phase Diagram Of The One-Dimensional Bose-Hubbard Model From Restricted Boltzmann Machines, Kristopher Mcbrian, Giuseppe Carleo, Ehsan Khatami

Faculty Publications

Motivated by recent advances in the representation of ground state wavefunctions of quantum many-body systems using restricted Boltzmann machines as variational ansatz, we utilize an open-source platform for constructing such ansatz called NetKet to explore the extent of applicability of restricted Boltzmann machines to bosonic lattice models. Within NetKet, we design and train these machines for the one-dimensional Bose-Hubbard model through a Monte Carlo sampling of the Fock space. We vary parameters such as the strength of the onsite repulsion, the chemical potential, the system size and the maximum site occupancy and use converged equations of state to identify phase …


Principal Component Analysis Of The Magnetic Transition In The Three-Dimensional Fermi-Hubbard Model, Ehsan Khatami Jan 2019

Principal Component Analysis Of The Magnetic Transition In The Three-Dimensional Fermi-Hubbard Model, Ehsan Khatami

Faculty Publications

Machine learning techniques have been widely used in the study of strongly correlated systems in recent years. Here, we review some applications to classical and quantum many-body systems and present results from an unsupervised machine learning technique, the principal component analysis, employed to identify the finite-temperature phase transition of the three-dimensional Fermi-Hubbard model to the antiferromagnetically ordered state. We find that this linear method can capture the phase transition as well as other more complicated and nonlinear counterparts.


Mirach’S Goblin: Discovery Of A Dwarf Spheroidal Galaxy Behind The Andromeda Galaxy, David Martínez-Delgado, Eva Grebel, Behnam Javanmardi, Walter Boschin, Nicolas Longeard, Julio Carballo-Bello, Dmitry Makarov, Michael Beasley, Giuseppe Donatiello, Martha Haynes, Duncan Forbes, Aaron Romanowsky Dec 2018

Mirach’S Goblin: Discovery Of A Dwarf Spheroidal Galaxy Behind The Andromeda Galaxy, David Martínez-Delgado, Eva Grebel, Behnam Javanmardi, Walter Boschin, Nicolas Longeard, Julio Carballo-Bello, Dmitry Makarov, Michael Beasley, Giuseppe Donatiello, Martha Haynes, Duncan Forbes, Aaron Romanowsky

Faculty Publications

Context. It is of broad interest for galaxy formation theory to carry out a full inventory of the numbers and properties of dwarf galaxies, both satellite and isolated, in the Local Volume.Aims. Ultra-deep imaging in wide areas of the sky with small amateur telescopes can help to complete the census of these hitherto unknown low-surface-brightness galaxies, which cannot be detected by the current resolved stellar population and HI surveys. We report the discovery of Donatiello I, a dwarf spheroidal galaxy located one degree from the star Mirach (β And) in a deep image taken with an amateur telescope.Methods. The color-magnitude …


Angular Momentum And Galaxy Formation Revisited: Scaling Relations For Disks And Bulges, S. Michael Fall, Aaron Romanowsky Dec 2018

Angular Momentum And Galaxy Formation Revisited: Scaling Relations For Disks And Bulges, S. Michael Fall, Aaron Romanowsky

Faculty Publications

We show that the stellar specific angular momentum j, mass M, and bulge fraction of normal galaxies of all morphological types are consistent with a simple model based on a linear superposition of independent disks and bulges. In this model, disks and bulges follow scaling relations of the form and with but offset from each other by a factor of 8 ± 2 over the mass range . Separate fits for disks and bulges alone give and , respectively. This model correctly predicts that galaxies follow a curved 2D surface in the 3D space of , , and . We …


The Dragonfly Nearby Galaxies Survey. V. Hst/Acs Observations Of 23 Low Surface Brightness Objects In The Fields Of Ngc 1052, Ngc 1084, M96, And Ngc 4258, Yotam Cohen, Pieter Van Dokkum, Shany Danieli, Aaron Romanowsky, Roberto Abraham, Allison Merritt, Jielai Zhang, Lamiya Mowla, J. Diederik Kruijssen, Charlie Conroy, Asher Wasserman Nov 2018

The Dragonfly Nearby Galaxies Survey. V. Hst/Acs Observations Of 23 Low Surface Brightness Objects In The Fields Of Ngc 1052, Ngc 1084, M96, And Ngc 4258, Yotam Cohen, Pieter Van Dokkum, Shany Danieli, Aaron Romanowsky, Roberto Abraham, Allison Merritt, Jielai Zhang, Lamiya Mowla, J. Diederik Kruijssen, Charlie Conroy, Asher Wasserman

Faculty Publications

We present Hubble Space Telescope/Advanced Camera for Surveys (ACS) imaging of 23 very low surface brightness (μ e,V ~ 25–27.5) galaxies detected in the fields of four nearby galaxy groups. These objects were selected from deep optical imaging obtained with the Dragonfly Telephoto Array. Seven are newly identified, while most of the others had been seen previously in visual surveys of deep photographic plates and more recent surveys. Few have previously been studied in detail. From the ACS images, we measure distances to the galaxies using both the tip of the red giant branch method and the surface brightness fluctuations …


The Extended Planetary Nebula Spectrograph (Epn.S) Early-Type Galaxy Survey: The Kinematic Diversity Of Stellar Halos And The Relation Between Halo Transition Scale And Stellar Mass, C. Pulsoni, O. Gerhard, M. Arnaboldi, L. Coccato, A. Longobardi, N. Napolitano, E. Moylan, C. Narayan, V. Gupta, A. Burkert, M. Capaccioli, A. Chies-Santos, A. Cortesi, K. Freeman, K. Kuijken, M. Merrifield, Aaron Romanowsky, C. Tortora Oct 2018

The Extended Planetary Nebula Spectrograph (Epn.S) Early-Type Galaxy Survey: The Kinematic Diversity Of Stellar Halos And The Relation Between Halo Transition Scale And Stellar Mass, C. Pulsoni, O. Gerhard, M. Arnaboldi, L. Coccato, A. Longobardi, N. Napolitano, E. Moylan, C. Narayan, V. Gupta, A. Burkert, M. Capaccioli, A. Chies-Santos, A. Cortesi, K. Freeman, K. Kuijken, M. Merrifield, Aaron Romanowsky, C. Tortora

Faculty Research, Scholarly, and Creative Activity

Context. In the hierarchical two-phase formation scenario, the halos of early type galaxies (ETGs) are expected to have different physical properties from the galaxies’ central regions.Aims. The ePN.S survey characterizes the kinematic properties of ETG halos using planetary nebulae (PNe) as tracers, overcoming the limitations of absorption line spectroscopy at low surface brightness.Methods. We present two-dimensional velocity and velocity dispersion fields for 33 ETGs, including fast (FRs) and slow rotators (SRs). The velocity fields were reconstructed from the measured PN velocities using an adaptive kernel procedure validated with simulations, and extend to a median of 5.6 effective radii (Re). We …


Wide-Field Kinematics Of Globular Clusters In The Leo I Group (Corrigendum), G. Bergond, S. Zepf, Aaron Romanowsky, R. Sharples, K. Rhode Oct 2018

Wide-Field Kinematics Of Globular Clusters In The Leo I Group (Corrigendum), G. Bergond, S. Zepf, Aaron Romanowsky, R. Sharples, K. Rhode

Faculty Publications

No abstract provided.


Chromodynamical Analysis Of Lenticular Galaxies Using Globular Clusters And Planetary Nebulae, Emilio Zanatta, Arianna Cortesi, Ana Chies-Santos, Duncan Forbes, Aaron Romanowsky, Adebusola Alabi, Lodovico Coccato, Claudia Mendes De Oliveira, Jean Brodie, Michael Merrifield Oct 2018

Chromodynamical Analysis Of Lenticular Galaxies Using Globular Clusters And Planetary Nebulae, Emilio Zanatta, Arianna Cortesi, Ana Chies-Santos, Duncan Forbes, Aaron Romanowsky, Adebusola Alabi, Lodovico Coccato, Claudia Mendes De Oliveira, Jean Brodie, Michael Merrifield

Faculty Publications

Recovering the origins of lenticular galaxies can shed light on the understanding of galaxy and compare them with the kinematics of planetary nebulae (PNe). The PNe and GC data come from the Planetary Nebulae Spectrograph and the SLUGGS Surveys. Through photometric spheroid-disc decomposition and PNe kinematics. we find the probability for a given GC to belong to either the spheroid or the disc of its host galaxy or be rejected from the model. We find that there is no correlation between the components that the GCs are likely to belong to and their colours. Particularly, for NGC 2768, we find …


Origins Of Ultradiffuse Galaxies In The Coma Cluster – Ii. Constraints From Their Stellar Populations, Anna Ferre-Mateu, Adebusola Alabi, Duncan Forbes, Aaron Romanowsky, Jean Brodie, Viraj Pandya, Ignacio Mart´In-Navarro, Sabine Bellstedt, Asher Wasserman, Maria Stone, Nobuhiro Okabe Oct 2018

Origins Of Ultradiffuse Galaxies In The Coma Cluster – Ii. Constraints From Their Stellar Populations, Anna Ferre-Mateu, Adebusola Alabi, Duncan Forbes, Aaron Romanowsky, Jean Brodie, Viraj Pandya, Ignacio Mart´In-Navarro, Sabine Bellstedt, Asher Wasserman, Maria Stone, Nobuhiro Okabe

Faculty Publications

In this second paper of the series we study, with new Keck/DEIMOS spectra, the stellar populations of seven spectroscopically confirmed ultradiffuse galaxies (UDGs) in the Coma cluster. We find intermediate to old ages (∼7 Gyr), low metallicities ([Z/H] ∼ −0.7 dex) and mostly supersolar abundance patterns ([Mg/Fe] ∼ 0.13 dex). These properties are similar to those of low-luminosity (dwarf) galaxies inhabiting the same area in the cluster and are mostly consistent with being the continuity of the stellar mass scaling relations of more massive galaxies. These UDGs’ star formation histories imply a relatively recent infall into the Coma cluster, consistent …


Origins Of Ultradiffuse Galaxies In The Coma Cluster – I. Constraints From Velocity Phase Space, Adebusola Alabi, Anna Ferré-Mateu, Aaron Romanowsky, Jean Brodie, Duncan Forbes, Asher Wasserman, Sabine Bellstedt, Ignacio Martín-Navarro, Viraj Pandya, Maria Stone, Nobuhiro Okabe Sep 2018

Origins Of Ultradiffuse Galaxies In The Coma Cluster – I. Constraints From Velocity Phase Space, Adebusola Alabi, Anna Ferré-Mateu, Aaron Romanowsky, Jean Brodie, Duncan Forbes, Asher Wasserman, Sabine Bellstedt, Ignacio Martín-Navarro, Viraj Pandya, Maria Stone, Nobuhiro Okabe

Faculty Publications

We use Keck/DEIMOS spectroscopy to confirm the cluster membership of 16 ultradiffuse galaxies (UDGs) in the Coma cluster, bringing the total number of spectroscopically confirmed UDGs from the Yagi et al. (Y16) catalogue to 25. We also identify a new cluster background UDG, confirming that most (∼95 per cent) of the UDGs in the Y16 catalogue belong to the Coma cluster. In this pilot study of Coma UDGs in velocity phase space, we find evidence of a diverse origin for Coma cluster UDGs, similar to normal dwarf galaxies. Some UDGs in our sample are consistent with being late infalls into …


The Distance Of The Dark Matter Deficient Galaxy Ngc 1052–Df2, Pieter Van Dokkum, Shany Danieli, Yotam Cohen, Aaron Romanowsky, Charlie Conroy Aug 2018

The Distance Of The Dark Matter Deficient Galaxy Ngc 1052–Df2, Pieter Van Dokkum, Shany Danieli, Yotam Cohen, Aaron Romanowsky, Charlie Conroy

Faculty Publications

We recently inferred that the galaxy NGC 1052–DF2 has little or no dark matter and a rich system of unusual globular clusters. We assumed that the galaxy is a satellite of the luminous elliptical galaxy NGC 1052 at ≈20 Mpc, on the basis of its surface brightness fluctuations (SBFs) distance of 19.0 ± 1.7 Mpc, its radial velocity of ≈1800 km s−1, and its projected position. Here we analyze the color–magnitude diagram (CMD) of NGC 1052–DF2, following the suggestion by Trujillo et al. that the tip of the red giant branch (TRGB) can be detected in currently available Hubble Space …


The Sluggs Survey: The Inner Dark Matter Density Slope Of The Massive Elliptical Galaxy Ngc 1407, Asher Wasserman, Aaron Romanowsky, Jean Brodie, Pieter Van Dokkum, Charlie Conroy, Alexa Villaume, Duncan Forbes, Jay Strader, Adebusola Alabi, Sabine Bellstedt Aug 2018

The Sluggs Survey: The Inner Dark Matter Density Slope Of The Massive Elliptical Galaxy Ngc 1407, Asher Wasserman, Aaron Romanowsky, Jean Brodie, Pieter Van Dokkum, Charlie Conroy, Alexa Villaume, Duncan Forbes, Jay Strader, Adebusola Alabi, Sabine Bellstedt

Faculty Publications

We investigate the dark matter density profile of the massive elliptical galaxy, NGC 1407, by constructing spherically symmetric Jeans models of its field star and globular cluster systems. Two major challenges in such models are the degeneracy between the stellar mass and the dark matter halo profiles, and the degeneracy between the orbital anisotropy of the tracer population and the total mass causing the observed motions. We address the first issue by using new measurements of the mass-to-light ratio profile from stellar population constraints that include a radially varying initial mass function. To mitigate the mass–anisotropy degeneracy, we make use …


A Deficit Of Dark Matter From Jeans Modeling Of The Ultra-Diffuse Galaxy Ngc 1052-Df2, Asher Wasserman, Aaron Romanowsky, Jean Brodie, Pieter Van Dokkum, Charlie Conroy, Roberto Abraham, Yotam Cohen, Shany Danieli Aug 2018

A Deficit Of Dark Matter From Jeans Modeling Of The Ultra-Diffuse Galaxy Ngc 1052-Df2, Asher Wasserman, Aaron Romanowsky, Jean Brodie, Pieter Van Dokkum, Charlie Conroy, Roberto Abraham, Yotam Cohen, Shany Danieli

Faculty Publications

The discovery of the ultra-diffuse galaxy NGC 1052-DF2 and its peculiar population of star clusters has raised new questions about the connections between galaxies and dark matter (DM) halos at the extremes of galaxy formation. In light of debates over the measured velocity dispersion of its star clusters and the associated mass estimate, we constrain mass models of DF2 using its observed kinematics with a range of priors on the halo mass. Models in which the galaxy obeys a standard stellar-halo mass relation are in tension with the data and also require a large central density core. Better fits are …