Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Exploring The Early Solar System: Cometary Chemical Fingerprints: A Study Of Comet C/2022 E3 (Ztf) Via Near-Infrared Spectroscopy, Grace Puchalski Sep 2024

Exploring The Early Solar System: Cometary Chemical Fingerprints: A Study Of Comet C/2022 E3 (Ztf) Via Near-Infrared Spectroscopy, Grace Puchalski

Undergraduate Research Symposium

Comets are small, icy remnants from the solar system formation (4.5 billion years ago). Their interior composition should reflect the composition and conditions presented in the mid-plane of the protoplanetary region where (and when) they formed. These small objects predominantly reside in two major reservoirs, the Oort cloud and the Kuiper belt. Comets coming from the Oort cloud have long orbital periods while comets from the Kuiper belt have short orbital periods (< 200 years). An overarching goal in astronomy is to understand the conditions presented in the planetary region in the early solar system. Since comets lack a known mechanism of self internal heating, any processes that have changed their composition should only affect a few meters deep, which is believed to be excavated over a course of a perihelion passage into the inner parts of the solar system. As comets get closer to the Sun, solar irradiation causes their ices to sublime, leaving a formation of a freely expanding atmosphere (coma). Depending on the science interest, astrophysicists use different techniques for data collection, a common one being spectroscopy. Using iSHELL spectrograph at the NASA-Near-Infrared Telescope Facility (IRTF), we examine the primary chemical composition (e.g., H2O, CO, CH4, C2H6, C2H2, H2CO, NH3, CH3OH, OCS, and OH) of cometary coma in bright comet C/2022 E3 (ZTF). Our preliminary results indicate the H2O production rate of ~3.4E28 (molecules per second), which corresponds to the rotational temperature of 86 (K). Cometary atmospheres are dense enough that molecules in the inner coma are thermalized by collision (Local Thermodynamic Equilibrium), thus 86 (K) is a physical parameter of coma. We compared the production of the rest of species with that of water (in %) and our results indicated that comet E3 was typical (close to average) in mixing ratios of all volatile species. By mapping the intensity of light with distance from the nucleus,we were able to examine the spatial distribution of volatiles and dust in E3’s coma which were consistent with production directly from the nucleus.


Reflectance Spectroscopy Datasets For The Validation Of Tanager, Kristiana Lapo, Kathleen Hoza, Sammy Theuer, Melissa S. Rice Apr 2024

Reflectance Spectroscopy Datasets For The Validation Of Tanager, Kristiana Lapo, Kathleen Hoza, Sammy Theuer, Melissa S. Rice

Geology Faculty Publications

The Three-Axis N-sample Automated Goniometer for Evaluating Reflectance (TANAGER) is a custom goniometer designed to rapidly acquire spectra of natural rock surfaces across the full scattering hemisphere. TANAGER interfaces with a Malvern Panalytical ASD Fieldspec 4 Hi-Res reflectance spectrometer to collect data from 350-2500 nm at a range of incidence, emission and azimuth angles. To validate the accuracy and repeatability of data collected with TANAGER - and to characterize any instrument noise, artifacts or sample heating effects - we collected spectra from three categories of targets: (1) powdered calcium sulfate (anhydrite), (2) naturally weathered basalt surfaces, and (3) color calibration …


Exploring The Hot And Gaseous Universe From Infrared To X-Ray, Chamani Gunasekera Jan 2024

Exploring The Hot And Gaseous Universe From Infrared To X-Ray, Chamani Gunasekera

Theses and Dissertations--Physics and Astronomy

Over 90% of baryonic matter in the universe exists as astrophysical plasmas. The gas
is often far from thermodynamic equilibrium, so numerical non-equilibrium spectral
synthesis simulations are used to understand observations. cloudy simulates vari-
ous physical conditions, providing spectra predictions. This thesis aims to meet the
challenge of new observatories like the JWST (James Webb Space Telescope) and
XRISM (X-Ray Imaging Spectroscopy Mission). These simulations are no better
than the underlying atomic and molecular database and the fourth chapter details
a long-needed update to an evolving database. The predicted spectra are strongly
affected by the composition of the gas, which …


Mesmerizing Moon Mysteries: Unraveling The Compositions Of Irregular Mare Patches (Imps) Using Remote Observations, Nicholas G. Piskurich Jan 2024

Mesmerizing Moon Mysteries: Unraveling The Compositions Of Irregular Mare Patches (Imps) Using Remote Observations, Nicholas G. Piskurich

Graduate Thesis and Dissertation 2023-2024

Compositional characterization of lunar surface features informs our understanding of the Moon's thermal and magmatic evolution. We investigated the compositions of hypothesized volcanic features known as irregular mare patches (IMPs) and their surroundings to constrain formation mechanisms. We used six datasets to assess the composition of 12 IMPs: 1) Moon Mineralogy Mapper (M3) derived spectral parameters (e.g., band center positions, shapes), 2) Lunar Reconnaissance Orbiter (LRO) Diviner Radiometer Experiment (Diviner) measured Christiansen feature (CF) position, 3) SELENE (Kaguya) Multiband Imager (MI) FeO abundance, 4) Clementine 5-band (Ultraviolet/Visible)-derived FeO abundance, 5) LRO Wide Angle Camera (WAC) TiO2 abundance, …


The Case For Photothermal Spectroscopy In The Future Of Planetary Science Missions, Christopher T. Cox Jan 2024

The Case For Photothermal Spectroscopy In The Future Of Planetary Science Missions, Christopher T. Cox

Graduate Thesis and Dissertation 2023-2024

Optical PhotoThermal InfraRed (O-PTIR) is a relatively new spectroscopy method for studying materials. It produces transmission-like spectra using a remote reflectance technique that is rapid, requires little sample preparation, and is well-suited for the technique to be adapted for a space flight instrument. The method involves a tunable pulsed IR laser creating a photothermal effect on the surface of a material and measuring the distortion of a probing visible laser in the same region of the sample, which can be obtained at sub-micron spatial resolutions. A measurement campaign was performed utilizing Photothermal Spectroscopy Corporation's O-PTIR instrument, mIRage®. In this campaign, …