Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Exploring The Early Solar System: Cometary Chemical Fingerprints: A Study Of Comet C/2022 E3 (Ztf) Via Near-Infrared Spectroscopy, Grace Puchalski Sep 2024

Exploring The Early Solar System: Cometary Chemical Fingerprints: A Study Of Comet C/2022 E3 (Ztf) Via Near-Infrared Spectroscopy, Grace Puchalski

Undergraduate Research Symposium

Comets are small, icy remnants from the solar system formation (4.5 billion years ago). Their interior composition should reflect the composition and conditions presented in the mid-plane of the protoplanetary region where (and when) they formed. These small objects predominantly reside in two major reservoirs, the Oort cloud and the Kuiper belt. Comets coming from the Oort cloud have long orbital periods while comets from the Kuiper belt have short orbital periods (< 200 years). An overarching goal in astronomy is to understand the conditions presented in the planetary region in the early solar system. Since comets lack a known mechanism of self internal heating, any processes that have changed their composition should only affect a few meters deep, which is believed to be excavated over a course of a perihelion passage into the inner parts of the solar system. As comets get closer to the Sun, solar irradiation causes their ices to sublime, leaving a formation of a freely expanding atmosphere (coma). Depending on the science interest, astrophysicists use different techniques for data collection, a common one being spectroscopy. Using iSHELL spectrograph at the NASA-Near-Infrared Telescope Facility (IRTF), we examine the primary chemical composition (e.g., H2O, CO, CH4, C2H6, C2H2, H2CO, NH3, CH3OH, OCS, and OH) of cometary coma in bright comet C/2022 E3 (ZTF). Our preliminary results indicate the H2O production rate of ~3.4E28 (molecules per second), which corresponds to the rotational temperature of 86 (K). Cometary atmospheres are dense enough that molecules in the inner coma are thermalized by collision (Local Thermodynamic Equilibrium), thus 86 (K) is a physical parameter of coma. We compared the production of the rest of species with that of water (in %) and our results indicated that comet E3 was typical (close to average) in mixing ratios of all volatile species. By mapping the intensity of light with distance from the nucleus,we were able to examine the spatial distribution of volatiles and dust in E3’s coma which were consistent with production directly from the nucleus.


Life Beyond The Horizon: The Universe Was Born In A Black Hole, Zahria Patrick Jan 2024

Life Beyond The Horizon: The Universe Was Born In A Black Hole, Zahria Patrick

Undergraduate Research Symposium

It is a widely accepted fact that obtaining information about a black hole is a near-impossible task without being stretched like a spaghetti noodle and trapped in one due to its strong gravitational pull. If the universe exists in a black hole, however, it will mean that it could be possible to survive after crossing its inescapable borders. As surprising as all of this may seem, this theory has existed for quite a while amongst a few different physicists. One person that has shed light on and expanded people’s knowledge of this frightening theory is theoretical physicist, Nikodem Poplawski. The …