Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Drug delivery

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 27 of 27

Full-Text Articles in Nanotechnology

Self-Assembled Ternary Polypeptide Nanoparticles With Improved Biostability For Drug Delivery In Cancer Therapy, Preye Mike Agbana Jan 2023

Self-Assembled Ternary Polypeptide Nanoparticles With Improved Biostability For Drug Delivery In Cancer Therapy, Preye Mike Agbana

Theses and Dissertations--Pharmacy

Cancer remains a real and present threat to global health. In the United States, according to cancer statistics, almost 40% of people will be diagnosed with cancer at some point in their lifetime. Conventional chemotherapy has become the mainstay for cancer treatment option. However, chemotherapeutic agents are plagued with problems such as poor aqueous solubility, chemical degradation, Bio instability, and off-site toxicity due to non-specificity. New drug modalities are needed to tackle the ever-growing burden on cancer. In recent times, the promise of nanotechnology has aided to develop drug delivery vehicles to facilitate the administration of potent chemotherapeutics. Nanoformulations such …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Nanotherapeutics And Hiv: Four Decades Of Infection Canvass The Quest For Drug Development Using Nanomedical Technologies, Bhupender S. Chhikara, Nirpendra Singh, Poonam, Parveen Bazard, Rajender S. Varma, Keykavous Parang Aug 2022

Nanotherapeutics And Hiv: Four Decades Of Infection Canvass The Quest For Drug Development Using Nanomedical Technologies, Bhupender S. Chhikara, Nirpendra Singh, Poonam, Parveen Bazard, Rajender S. Varma, Keykavous Parang

Pharmacy Faculty Articles and Research

We have seen four decades of human struggle to cure or eradicate HIV infection since the first clinical detection of HIV infection. Various developed drugs such as nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors, integrase inhibitors, microbicides, and others have known restrictions, such as side effects and resistance development when used alone, and hidden reservoir of the virus, which have opened the gates for the involvement of nanomedicine associated systems, particularly for latent sites of HIV infection. The nanotechnological vehicles, such as liposomes, dendrimers, metal nanoparticles, polymeric nanocapsules/particles, surfactants, and targeted vehicles have become part …


Exploiting Modulation Of The Blood-Brain And Blood-Tumor Barrier Permeability By Translational Focused Ultrasound For Therapeutic Delivery To Cns Metastases, Tasneem A. Arsiwala Jan 2022

Exploiting Modulation Of The Blood-Brain And Blood-Tumor Barrier Permeability By Translational Focused Ultrasound For Therapeutic Delivery To Cns Metastases, Tasneem A. Arsiwala

Graduate Theses, Dissertations, and Problem Reports

Transcranial low-intensity focused ultrasound is a unique technology to modulate the integrity of tight endothelial junctions and transiently increase BBB/BTB permeability to enhance therapeutic delivery. Despite promising early studies, present literature lacks agreement on key experimental conditions, which restricts our knowledge and the technique's widespread translation. This dissertation first provides a critical review of the current gaps in knowledge regarding the universal use of LiFUS in preclinical and clinical use. We then identify key parameters for translational and predictable opening of the BBB using a 3T MRI coupled with a clinical device. Our investigation highlights that passive permeability of the …


Development Of Biomaterials For Drug Delivery, Raquel De Castro May 2021

Development Of Biomaterials For Drug Delivery, Raquel De Castro

Graduate Theses and Dissertations

Drug delivery systems (DDS) have highly evolved in the last decades with the development of hydrogels and nanoparticles. However, high systemic uptake, side effects, low bioavailability, and encapsulation efficiency continue to be a major hurdle faced by such DDSs.

Nanoparticles and hydrogels can be specifically designed for targeted DDSs to mitigate some of the problems. This dissertation aimed to design two DDSs for ocular drug delivery and one for cancer treatment. The first project sought to develop chitosan nanoparticles (Cs-NP) using PEGDA as a copolymer to encapsulate gentamicin (GtS) for ocular drug delivery. Cs-NPs contain positive charges that can interact …


Ligand-Installed Polymeric Nanocarriers For Combination Chemotherapy, Xinyuan Xi Aug 2020

Ligand-Installed Polymeric Nanocarriers For Combination Chemotherapy, Xinyuan Xi

Theses & Dissertations

Combination chemotherapy remains the mainstay of cancer treatment because such strategy targets different cell signaling pathways to decrease the likelihood of developing protective mechanisms by cancer cells, thereby delaying the onset of recurrence and prolonging the survival. The co-delivery of binary drug combination via a single nanocarrier provides benefits in reducing dose-limiting toxicities, improving the pharmacokinetic properties of the cargo, spatial-temporal synchronization of drug exposure, and synergistic therapeutic effects. Rational design of such regimen is crucial for maximizing the therapeutic effects since only certain drug ratios exposed to the target might be synergistic while other ratios exert additive or even …


Developing A Dissociative Nanocontainer For Peptide Drug Delivery, Michael Patrick Kelly Sep 2019

Developing A Dissociative Nanocontainer For Peptide Drug Delivery, Michael Patrick Kelly

Dissertations, Theses, and Capstone Projects

The potency and specificity of bioactive peptides have propelled these agents to the forefront of pharmacological research. However, delivery of peptides to their molecular target in cells is a major obstacle to their widespread application. A Trojan Horse strategy of packaging a bioactive peptide within a modified protein cage to protect it during transport, and releasing it at the target site, is a promising delivery method. Recent work has demonstrated that the viral capsid of the P22 bacteriophage can be loaded with an arbitrary, genetically-encoded peptide, and externally decorated with a cell-penetrating peptide, such as HIV-Tat, to translocate across in …


Development Of Bar-Peptide Nanoparticles And Electrospun Fibers For The Prevention And Treatment Of Oral Biofilms., Mohamed Yehia Mahmoud May 2019

Development Of Bar-Peptide Nanoparticles And Electrospun Fibers For The Prevention And Treatment Of Oral Biofilms., Mohamed Yehia Mahmoud

Electronic Theses and Dissertations

Background: Periodontal diseases are globally prevalent inflammatory disorders that affect ~47% of U.S adults. Porphyromonas gingivalis (Pg) has been identified as a “keystone” pathogen that disrupts host-microbe homeostasis and contributes to the initiation and progression of periodontitis. Pg associates with oral streptococci in supragingival plaque and this interaction represents a potential target for therapeutic intervention. Previously our group developed a peptide (designated BAR), that potently inhibits Pg/Streptococcus gordonii (Sg) adherence in vitro and Pg virulence in a murine model of periodontitis. While efficacious, BAR (SspB Adherence Region) provided transient inhibition and required higher concentrations of BAR to disrupt established …


Preparation And Characterization Of Multimodal Hybrid Organic And Inorganic Nanocrystals Of Camptothecin And Gold, Christin P. Hollis, Alan K. Dozier, Barbara L. Knutson, Tonglei Li Jan 2019

Preparation And Characterization Of Multimodal Hybrid Organic And Inorganic Nanocrystals Of Camptothecin And Gold, Christin P. Hollis, Alan K. Dozier, Barbara L. Knutson, Tonglei Li

Pharmaceutical Sciences Faculty Publications

We demonstrate a novel inorganic-organic crystalline nanoconstruct, where gold atoms were imbedded in the crystal lattices as defects of camptothecin nanocrystals, suggesting its potential use as simultaneous agents for cancer therapy and bioimaging. The incorporation of gold, a potential computed tomography (CT) contrast agent, in the nanocrystals of camptothecin was detected by transmission electron microscope (TEM) and further quantified by energy dispersive X-ray spectrometry (EDS) and inductively coupled plasma-optical emission spectrometers (ICP-OES). Due to gold's high attenuation coefficient, only a relatively small amount needs to be present in order to create a good noise-to-contrast ratio in CT imaging. The imbedded …


Mechanisms And Thermodynamics Of The Influence Of Solution-State Interactions Between Hpmc And Surfactants On Mixed Adsorption Onto Model Nanoparticles, Salin Gupta Patel Jan 2019

Mechanisms And Thermodynamics Of The Influence Of Solution-State Interactions Between Hpmc And Surfactants On Mixed Adsorption Onto Model Nanoparticles, Salin Gupta Patel

Theses and Dissertations--Pharmacy

Nanoparticulate drug delivery systems (NDDS) such as nanocrystals, nanosuspensions, solid-lipid nanoparticles often formulated for the bioavailability enhancement of poorly soluble drug candidates are stabilized by a mixture of excipients including surfactants and polymers. Most literature studies have focused on the interaction of excipients with the NDDS surfaces while ignoring the interaction of excipients in solution and the extent to which the solution-state interactions influence the affinity and capacity of adsorption. Mechanisms by which excipients stabilize NDDS and how this information can be utilized by formulators a priori to make a rational selection of excipients is not known.

The goals of …


Nanomedicine For Immunosuppressive Therapy: Achievements In Pre-Clinical Research, Hanan Al-Lawati, Hamidreza Montazeri Aliabadi, Behzad Sharif Makhmalzadeh, Afsaneh Lavasanifar Dec 2017

Nanomedicine For Immunosuppressive Therapy: Achievements In Pre-Clinical Research, Hanan Al-Lawati, Hamidreza Montazeri Aliabadi, Behzad Sharif Makhmalzadeh, Afsaneh Lavasanifar

Pharmacy Faculty Articles and Research

Introduction: Immunosuppression is the mainstay therapy in organ transplantation and autoimmune diseases. The effective clinical application of immunosuppressive agents has suffered from the emergence of systemic immunosuppression and/or individual drug side effects. Nanotechnology approaches may be used to modify the mentioned shortcomings by enhancing the delivery of immunosuppressants to target cells of the immune system, thus reducing the required dose for function, and/or reducing drug distribution to non-target tissues.

Areas covered: We provide an overview on the development of nanotechnology products for the most commonly used immunosuppressive agents. At first, the rationale for the use of nanoparticles as …


Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed Dec 2017

Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed

Electronic Thesis and Dissertation Repository

The fast diminishing of fossil fuels in the near future, as well as the global warming caused by increasing greenhouse gases have motivated the urgent quest to develop advanced materials as cost-effective photoanodes for solar light harvesting and many other photocatalytic applications. Recently, titania nanotube arrays (TNTAs) fabricated by anodization process has attracted great interest due to their excellent properties such as: high surface area, vertically oriented, highly organized, one-dimensional, nanotubular structure, photoactivity, chemical stability and biocompatibility. This unique combination of excellent properties makes TNTAs an excellent photoanode for solar light harvesting. However, the relatively wide band gap energy of …


The Design, Fabrication, And Characterization Of Nanoparticle-Protein Interactions For Theranostic Applications, Wai Hei Tse Aug 2017

The Design, Fabrication, And Characterization Of Nanoparticle-Protein Interactions For Theranostic Applications, Wai Hei Tse

Electronic Thesis and Dissertation Repository

Theranostics, a combination of therapeutics and diagnostics, spans a spectrum of research areas to provide new opportunities in developing new healthcare technologies and medicine at affordable prices. Through employing a personalized medicine approach, biotechnology can be tailored to the needs of an individual. Applications of theranostics include drug delivery carriers capable of sustained drug release and targeted delivery, biosensors with high sensitivity and selectivity, and diagnostic relevant entities that can be incorporated into the former technologies. Nanotechnology provides a suitable foundation for theranostics to build upon due to material-based properties; magnetism, biocompatibility, and quantum effects to name a few. Purpose …


Targeted And Controlled Anticancer Drug Delivery And Release With Magnetoelectric Nanoparticles, Alexandra Rodzinski Nov 2016

Targeted And Controlled Anticancer Drug Delivery And Release With Magnetoelectric Nanoparticles, Alexandra Rodzinski

FIU Electronic Theses and Dissertations

A major challenge of cancer treatment is successful discrimination of cancer cells from healthy cells. Nanotechnology offers multiple venues for efficient cancer targeting. Magnetoelectric nanoparticles (MENs) are a novel, multifaceted, physics-based cancer treatment platform that enables high specificity cancer targeting and externally controlled loaded drug release. The unique magnetoelectric coupling of MENs allows them to convert externally applied magnetic fields into intrinsic electric signals, which allows MENs to both be drawn magnetically towards the cancer site and to electrically interface with cancer cells. Once internalized, the MEN payload release can be externally triggered with a magnetic field. MENs uniquely allow …


Design Of Drug Nano-Carriers For Study Of Multidrug Resistance In Single Live Cells, Pavan Kumar Cherukuri Oct 2016

Design Of Drug Nano-Carriers For Study Of Multidrug Resistance In Single Live Cells, Pavan Kumar Cherukuri

Chemistry & Biochemistry Theses & Dissertations

Multidrug resistance (MDR) exists in both prokaryotic and eukaryotic cells. MDR is responsible for ineffective treatment of a wide range of diseases, such as infections and cancer. The ATP-binding cassette (ABC) membrane transporters (efflux pumps) are one of the largest and most diverse super-families of membrane proteins found in all living organisms, ranging from bacteria to humans. All ABC transporters share a common structure of four core domains; two transmembrane domains (TMD) with variable sequence and topology and two nucleotide-binding domains (NBD) with conserved sequences. Conventional methods for the study of the efflux functions are radioactively labeled substrates and fluorescent …


Gold Nanostars For Efficient In Vitro And In Vivo Real-Time Sers Detection And Drug Delivery Via Plasmonic-Tunable Raman/Ftir Imaging, Furong Tian, Joao Conde, Chenchen Bao, Yunsheng Chen, James Curtin, Daxiang Cui Aug 2016

Gold Nanostars For Efficient In Vitro And In Vivo Real-Time Sers Detection And Drug Delivery Via Plasmonic-Tunable Raman/Ftir Imaging, Furong Tian, Joao Conde, Chenchen Bao, Yunsheng Chen, James Curtin, Daxiang Cui

Articles

The application of plasmonic-enhanced Raman imaging of cancer cells and drug delivery is gaining momentum. Here, we propose a new theranostic strategy based on an efficient plasmonic-tunable Raman/Fourier transform infrared (FTIR) spectroscopy imaging, to simultaneously evaluate the anticancer drug scattering cellular imaging and the Raman scattering molecular vibration signals in living cells. This technique allows to monitoring the drug release throughout the cell cycle and in vivo biodistribution and biocompatibility with low dose drug therapy (200 µg/mL) and low toxicity effect. This system can directly track in real-time the delivery and release of an anticancer drug (mitoxantrone, MTX) from gold …


Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu Jun 2016

Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu

Pharmacy Faculty Articles and Research

Socially responsible technologies are designed while taking into consideration the socioeconomic, geopolitical and environmental limitations of regions in which they will be implemented. In the medical context, this involves making therapeutic platforms more accessible and affordable to patients in poor regions of the world wherein a given disease is endemic. This often necessitates going against the reigning trend of making therapeutic nanoparticles ever more structurally complex and expensive. However, studies aimed at simplifying materials and formulations while maintaining the functionality and therapeutic response of their more complex counterparts seldom provoke a significant interest in the scientific community. In this review …


Polymeric Nanocarriers For Treatment Of Melanoma And Genetically Modified Mesenchymal Stem Cells To Improve Outcome Of Islet Transplantation, Vaibhav Mundra Aug 2015

Polymeric Nanocarriers For Treatment Of Melanoma And Genetically Modified Mesenchymal Stem Cells To Improve Outcome Of Islet Transplantation, Vaibhav Mundra

Theses & Dissertations

Melanoma is a lethal malignancy with limited treatment options for advanced metastatic stages. New targeted therapeutic options with discovery of BRAF and MEK inhibitors have shown significant survival benefit. Despite the recent progress, inefficient tumor accumulation and dose limiting systemic toxicity remains pressing challenges for treating metastatic melanoma and there is a need for drug delivery approach to improve therapeutic index of chemotherapeutics. Nanoparticle based drug delivery represents promising approach to enhance efficacy and reduce the dose limiting systemic toxicity. Nanoparticles can be formulated either by physical encapsulation of drugs or by covalent conjugation of drugs to the polymeric backbone. …


Enzyme Catalyzed Alginate Nanogels For Drug Delivery, Danna Nichole Sharp Aug 2015

Enzyme Catalyzed Alginate Nanogels For Drug Delivery, Danna Nichole Sharp

Masters Theses

Developing nanoscale carriers for the delivery of therapeutics is an important topic of investigation in current biomedical research. As opposed to traditional drug delivery systems, nanoscale systems offer enhanced tissue and cell permeation in addition to reducing drug elimination from the body. Biological based therapeutics such as DNA and proteins are now widely employed in medical applications and research has focused on using nanoscale drug delivery systems to administer these more effectively. Current synthesis methods of nanoscale biotherapeutic carriers face significant challenges. Among these are creating carriers with: sizes between 10-200 nm, low polydispersity, and non-cytotoxic materials. In this thesis, …


Mdr1 Sirna Loaded Hyaluronic Acid-Based Cd44 Targeted Nanoparticle Systems Circumvent Paclitaxel Resistance In Ovarian Cancer, Xiaoqian Yang, Arun K. Iyer, Amit Singh, Edwin Choy, Francis J. Hornicek, Mansoor M. Amiji, Zhenfeng Duan Feb 2015

Mdr1 Sirna Loaded Hyaluronic Acid-Based Cd44 Targeted Nanoparticle Systems Circumvent Paclitaxel Resistance In Ovarian Cancer, Xiaoqian Yang, Arun K. Iyer, Amit Singh, Edwin Choy, Francis J. Hornicek, Mansoor M. Amiji, Zhenfeng Duan

Pharmaceutical Sciences Faculty Publications

Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of …


Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa Dec 2014

Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa

Electronic Thesis and Dissertation Repository

The objective of this research was to develop polymeric nanoparticles (NPs) having improved drug release properties for drug delivery. Poly(ester amide)s (PEAs) are promising biodegradable polymers. PEA NPs were prepared via emulsification-evaporation and salting-out methods and optimized through by varying different processing parameters. Polymer-model drug conjugates based on PEAs containing L-aspartic acid and rhodamine B were synthesized and used for NP preparation. Release behavior was studied and compared to a control system with physically encapsulated rhodamine B. It was shown that the release of rhodamine B from the covalent system did not show the burst effect and exhibited a slower …


Ligand-Receptor Interactions For Supramolecular Disassembly With Applications In Screening And Drug Delivery, Diego Amado Torres Aug 2014

Ligand-Receptor Interactions For Supramolecular Disassembly With Applications In Screening And Drug Delivery, Diego Amado Torres

Doctoral Dissertations

Proteins have the capacity to bind specific sets of compounds known as ligands, these are small molecules with a recurrent theme in their molecular design that is a characteristic exploited here to (i) identify particular affinities of small molecules for proteins with the aim of using them as ligands, inhibitors, or targeting moieties in more complex systems by means of a methodology that screens small molecules based on protein affinity; (ii) decorate a self-assembling supramolecular system at different positions, making it responsive to a complementary protein with the aim of exploring differences in disassembly and sensitivity of the release of …


Formation Of Lactalbumin Nanoparticles By Desolvation Method, Menglu Gao, Jozef Kokini, Luis Fernando Maldonado-Mejia Aug 2014

Formation Of Lactalbumin Nanoparticles By Desolvation Method, Menglu Gao, Jozef Kokini, Luis Fernando Maldonado-Mejia

The Summer Undergraduate Research Fellowship (SURF) Symposium

Protein nanoparticles are ideal carriers for bioactive compounds such as nutraceuticals and drugs because they are biodegradable, less immunogenic and non-toxic and can be nanoparticulated. This study focuses on the desolvation method to form lactalbumin protein nanoparticles. Lactalbumin is soluble in water and insoluble in many organic solvents. Different solvent/non-solvent ratios are evaluated in this research project for the effect they have on the size, PDI and stability of protein nanoparticles. Different methods including sonication and centrifugation were used and compared in terms of their effectiveness to produce small nanoparticles during fabrication of the nanoparticles. Data collected including protein nanoparticles …


Bioactivity And Cell-Mediated Targeting Of Multistage Nanoporous Silicon Particles, Jonathan O. Martinez May 2014

Bioactivity And Cell-Mediated Targeting Of Multistage Nanoporous Silicon Particles, Jonathan O. Martinez

Dissertations & Theses (Open Access)

Progress in drug delivery approaches have not adequately translated into clinical advances in the diagnosis or treatment of inflammatory disorders (e.g., cancer). This disconnect is rooted in the inefficient delivery of imaging and therapeutic agents to the inflamed site upon systemic delivery. A multitude of biological barriers pose insurmountable obstacles limiting the ability of the agent to effectively reach and accumulate at the target site. Nanoparticles (NP) surfaced as potential vectors to encapsulate and deliver biological agents. However, even after surface decoration, NP have failed to evade biological barriers (i.e., MPS) and to accumulate at the tumor site at therapeutic …


Phase Composition Control Of Calcium Phosphate Nanoparticles For Tunable Drug Delivery Kinetics And Treatment Of Osteomyelitis. Part 2: Antibacterial And Osteoblastic Response, Vuk Uskoković, Tejal A. Dasai Jan 2013

Phase Composition Control Of Calcium Phosphate Nanoparticles For Tunable Drug Delivery Kinetics And Treatment Of Osteomyelitis. Part 2: Antibacterial And Osteoblastic Response, Vuk Uskoković, Tejal A. Dasai

Pharmacy Faculty Articles and Research

Osteomyelitis has been traditionally treated by the combination of long-term antibiotic therapies and surgical removal of diseased tissue. The multifunctional material was developed in this study with the aim to improve this therapeutic approach by: (a) enabling locally delivered and sustained release of antibiotics at a tunable rate, so as to eliminate the need for repetitive administration of systemically distributed antibiotics; and (b) controllably dissolving itself, so as to promote natural remineralization of the portion of bone lost to disease. We report hereby on the effect of the previously synthesized calcium phosphates (CAPs) with tunable solubilities and drug release time …


Nanoparticlated Drug Delivery System For Vitreous Humor, Kartheek K. Suragoni Jul 2012

Nanoparticlated Drug Delivery System For Vitreous Humor, Kartheek K. Suragoni

All Capstone Projects

The purpose of this study is to develop a unique nanoparticulated system that has the capability of providing sustained drug delivery into the eyes. In ophthalmic preparations, poor ocular drug delivery of ocular dosage form is due to the production of tears and impermeability through corneal epithelium. The usage of liposomes in ophthalmic disorders shows promising results in ocular drug delivery. Liposomes are bilayered, microscopic vesicles surrounded by the aqueous compartments. Liposomes have the ability to encapsulate both hydrophilic and hydrophobic drugs. This unique property of liposomes helps in delivering the drug at specific site. This invention involves three major …


Pegylated Silicon Nanowire Coated Silica Microparticles For Drug Delivery Across Intestinal Epithelium, Vuk Uskoković, Phin-Peng Lee, Laura Walsh, Kathleen Fischer, Tejal Dasai Jan 2012

Pegylated Silicon Nanowire Coated Silica Microparticles For Drug Delivery Across Intestinal Epithelium, Vuk Uskoković, Phin-Peng Lee, Laura Walsh, Kathleen Fischer, Tejal Dasai

Pharmacy Faculty Articles and Research

Composite particles made by growing nanoscopic silicon wires from the surface of monodispersed, microsized silica beads were tested in this study for their ability to affect the integrity and permeability of an epithelial cell layer. Polyethylene glycol (PEG) is known to sterically stabilize particles and prevent protein binding; as such, it is a routine way to impart in vivo longevity to drug carriers. The effect of the silica beads, both with and without silicon nanowires and PEG, on the disruption of the tight junctions in Caco-2 cells was evaluated by means of: (a) analysis of the localization of zonula occludens-1 …