Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Nanotechnology

Pamam Dendrimers As Promising Nanocarriers For Rnai Therapeutics, Prashant Kesharwani, Sanjeev Banerjee, Umesh Gupta, Mohd Cairul Iqbal Mohd Amin, Subhash Padhye, Fazlul H. Sarkar, Arun K. Iyer Dec 2015

Pamam Dendrimers As Promising Nanocarriers For Rnai Therapeutics, Prashant Kesharwani, Sanjeev Banerjee, Umesh Gupta, Mohd Cairul Iqbal Mohd Amin, Subhash Padhye, Fazlul H. Sarkar, Arun K. Iyer

Pharmaceutical Sciences Faculty Publications

Therapeutics based on RNA interference mechanisms are highly promising for the management of several diseases including multi-drug resistant cancers. However, effective delivery of siRNAs and oligonucleotides still remains challenging. In this regard, hyper-branched, PAMAM dendrimers having unique three-dimensional architecture and nanoscale size, with cationic surface charge can potentially serve as siRNA condensing agents as well as robust nano-vectors for targeted delivery. In addition, their surface functionality permits conjugation of drugs and genes or development of hybrid systems for combination therapy. Thus far, in vitro cellular testing of dendrimer-mediated siRNA delivery has revealed great potential, with reports on their in vivo …


Polymeric Nanoparticle-Based Delivery Of Microrna-199a-3p Inhibits Proliferation And Growth Of Osteosarcoma Cells, Linlin Zhang, Arun K. Iyer, Xiaoqian Yang, Eisuke Kobayashi, Yuqi Guo, Henry Mankin, Francis J. Hornicek, Mansoor M. Amiji, Zhenfeng Duan Apr 2015

Polymeric Nanoparticle-Based Delivery Of Microrna-199a-3p Inhibits Proliferation And Growth Of Osteosarcoma Cells, Linlin Zhang, Arun K. Iyer, Xiaoqian Yang, Eisuke Kobayashi, Yuqi Guo, Henry Mankin, Francis J. Hornicek, Mansoor M. Amiji, Zhenfeng Duan

Pharmaceutical Sciences Faculty Publications

Our prior screening of microRNAs (miRs) identified that miR-199a-3p expression is reduced in osteosarcoma cells, one of the most common types of bone tumor. miR-199a-3p exhibited functions of tumor cell growth inhibition, suggesting the potential application of miR-199a-3p as an anticancer agent. In the study reported here, we designed and developed a lipid-modified dextran-based polymeric nanoparticle platform for encapsulation of miRs, and determined the efficiency and efficacy of delivering miR-199a-3p into osteosarcoma cells. In addition, another potent miR, let-7a, which also displayed tumor suppressive ability, was selected as a candidate miR for evaluation. Fluorescence microscopy studies and real-time polymerase chain …


Mdr1 Sirna Loaded Hyaluronic Acid-Based Cd44 Targeted Nanoparticle Systems Circumvent Paclitaxel Resistance In Ovarian Cancer, Xiaoqian Yang, Arun K. Iyer, Amit Singh, Edwin Choy, Francis J. Hornicek, Mansoor M. Amiji, Zhenfeng Duan Feb 2015

Mdr1 Sirna Loaded Hyaluronic Acid-Based Cd44 Targeted Nanoparticle Systems Circumvent Paclitaxel Resistance In Ovarian Cancer, Xiaoqian Yang, Arun K. Iyer, Amit Singh, Edwin Choy, Francis J. Hornicek, Mansoor M. Amiji, Zhenfeng Duan

Pharmaceutical Sciences Faculty Publications

Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of …


Combination Of Sirna-Directed Gene Silencing With Cisplatin Reverses Drug Resistance In Human Non-Small Cell Lung Cancer, Shanthi Ganesh, Arun K. Iyer, Jan Weller, David V. Morrissey, Mansoor M. Amiji Jul 2013

Combination Of Sirna-Directed Gene Silencing With Cisplatin Reverses Drug Resistance In Human Non-Small Cell Lung Cancer, Shanthi Ganesh, Arun K. Iyer, Jan Weller, David V. Morrissey, Mansoor M. Amiji

Pharmaceutical Sciences Faculty Publications

One of the most challenging aspects of lung cancer therapy is the rapid acquisition of multidrug-resistant (MDR) phenotype. One effective approach would be to identify and downregulate resistance-causing genes in tumors using small interfering RNAs (siRNAs) to increase the sensitivity of tumor cells to chemotherapeutic challenge. After identifying the overexpressed resistance-related antiapoptotic genes (survivin and bcl-2) in cisplatin-resistant cells, the siRNA sequences were designed and screened to select the most efficacious candidates. Modifications were introduced in them to minimize off-target effects. Subsequently, the combination of siRNA and cisplatin that gave the maximum synergy was identified in resistant cells. We then …


Inhibition Of Abcb1 (Mdr1) Expression By An Sirna Nanoparticulate Delivery System To Overcome Drug Resistance In Osteosarcoma, Michiro Susa, Arun K. Iyer, Keinosuke Ryu, Edwin Choy, Francis J. Hornicek, Henry Mankin, Lara Milane, Mansoor M. Amiji, Zhenfeng Duan May 2010

Inhibition Of Abcb1 (Mdr1) Expression By An Sirna Nanoparticulate Delivery System To Overcome Drug Resistance In Osteosarcoma, Michiro Susa, Arun K. Iyer, Keinosuke Ryu, Edwin Choy, Francis J. Hornicek, Henry Mankin, Lara Milane, Mansoor M. Amiji, Zhenfeng Duan

Pharmaceutical Sciences Faculty Publications

Background: The use of neo-adjuvant chemotherapy in treating osteosarcoma has improved patients’ average 5 year survival rate from 20% to 70% in the past 30 years. However, for patients who progress after chemotherapy, its effectiveness diminishes due to the emergence of multi-drug resistance (MDR) after prolonged therapy.

Methodology/Principal Findings: In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure resulting from MDR, we designed and evaluated a novel drug delivery system for MDR1 siRNA delivery. Novel biocompatible, lipid-modified dextran-based polymeric nanoparticles were used as the platform for MDR1 siRNA delivery; and the efficacy …


Doxorubicin Loaded Polymeric Nanoparticulate Delivery System To Overcome Drug Resistance In Osteosarcoma, Michiro Susa, Arun K. Iyer, Keinosuke Ryu, Francis J. Hornicek, Henry Mankin, Mansoor M. Amiji, Zhenfeng Duan Nov 2009

Doxorubicin Loaded Polymeric Nanoparticulate Delivery System To Overcome Drug Resistance In Osteosarcoma, Michiro Susa, Arun K. Iyer, Keinosuke Ryu, Francis J. Hornicek, Henry Mankin, Mansoor M. Amiji, Zhenfeng Duan

Pharmaceutical Sciences Faculty Publications

Background: Drug resistance is a primary hindrance for the efficiency of chemotherapy against osteosarcoma. Although chemotherapy has improved the prognosis of osteosarcoma patients dramatically after introduction of neo-adjuvant therapy in the early 1980's, the outcome has since reached plateau at approximately 70% for 5 year survival. The remaining 30% of the patients eventually develop resistance to multiple types of chemotherapy. In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure incurred from multidrug resistant (MDR) tumor cells, we explored the possibility of loading doxorubicin onto biocompatible, lipid-modified dextran-based polymeric nanoparticles and evaluated the …