Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

City University of New York (CUNY)

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 17 of 17

Full-Text Articles in Nanotechnology

Leveraging Bio-Inspired Molecules For Cancer Theranostics, Douglas S. Macpherson Feb 2023

Leveraging Bio-Inspired Molecules For Cancer Theranostics, Douglas S. Macpherson

Dissertations, Theses, and Capstone Projects

A variety of molecules can be radiolabeled and delivered to a cancer site for the purposes of diagnostics and therapy. Among the most promising of tumor targeting molecules are peptides and antibodies. These bio-inspired molecules can be designed and synthesized to target and respond to cancer cells based on the properties of those cells. Matrix metalloproteinase (MMP) enzymes are over-expressed by some metastatic cancers, in which they are responsible for the degradation and remodeling of the extracellular matrix. In recent years, MMPs have emerged as promising targets for enzyme-responsive diagnostic probes because oligopeptides can be designed to be selectively hydrolyzed …


Soft X-Ray And Susceptibility Based Magnetic Resonance Imaging To Map Iron Distribution In Apples: Initial Results To Model Iron Storage In Water-Deficient Or Dehydrated Biological Tissue, Subhendra N. Sarkar, Eric Lobel, Evans Lespinasse, Zoya Vinokur, Analia Basilicata, Sonia Orellana, Maria Orellana, Aaliyah Salmon, Joanna Syska, Aravis Mcbroom, Jian Wang, Anam Riaz, Jodi-Ann Douglas Jan 2023

Soft X-Ray And Susceptibility Based Magnetic Resonance Imaging To Map Iron Distribution In Apples: Initial Results To Model Iron Storage In Water-Deficient Or Dehydrated Biological Tissue, Subhendra N. Sarkar, Eric Lobel, Evans Lespinasse, Zoya Vinokur, Analia Basilicata, Sonia Orellana, Maria Orellana, Aaliyah Salmon, Joanna Syska, Aravis Mcbroom, Jian Wang, Anam Riaz, Jodi-Ann Douglas

Publications and Research

Radiology departments have contributed significantly to greenhouse gases including release of toxic imaging contrast media to environment. We feel Radiology also has several spectroscopy and imaging tools that may apply to monitor and support cleaner environmental goals. The current manuscript is one of the firsts to prompt Radiology to move in that direction by non invasive imaging of bio metals that are less abundant in biological tissues but play key roles as co-factors in tissue structure and function. Conventional analytical tools are mostly invasive and cannot characterize the native oxidation states of bio metals. We chose carbohydrate matrix of metal-rich …


Biomimetic And Medical Applications Of Hollow Nanoscale Structures, Justin Fang Jun 2022

Biomimetic And Medical Applications Of Hollow Nanoscale Structures, Justin Fang

Dissertations, Theses, and Capstone Projects

Materials whose structure incorporates nanoscale void spaces have multiple possible uses, whether in a bulk form or as individual particles, due to the combination of high surface area ratios and nanoscale material properties. This thesis will explore a few of these possibilities, concentrating on potential biomimetic and biomedical applications, for two materials: metal- organic frameworks and superparamagnetic iron oxide nanocages.

Metal-organic frameworks consist of metal ions such as Cu2+ which have highly porous lattice structures allowing them to absorb and release guest molecules such as peptides like diphenylalanine; this stored chemical energy can be turned into kinetic energy and used …


Biomedical Applications Of Lanthanide Nanomaterials, For Imaging, Sensing And Therapy, Qize Zhang, Stephen O'Brien, Jan Grimm Jan 2022

Biomedical Applications Of Lanthanide Nanomaterials, For Imaging, Sensing And Therapy, Qize Zhang, Stephen O'Brien, Jan Grimm

Publications and Research

The application of nanomaterials made of rare earth elements within biomedical sciences continues to make significant progress. The rare earth elements, also called the lanthanides, play an essential role in modern life through materials and electronics. As we learn more about their utility, function, and underlying physics, we can contemplate extending their applications to biomedicine. This particularly applies to diagnosis and radiation therapy due to their relatively unique features, such as an ultra-wide Stokes shift in the luminescence, variable magnetism and potentially tunable properties, due to the library of lanthanides available and their multivalent oxidation state chemistry. The ability to …


Enhanced Platinum (Ii) Drug Delivery For Anti-Cancer Therapy, Marek T. Wlodarczyk Sep 2021

Enhanced Platinum (Ii) Drug Delivery For Anti-Cancer Therapy, Marek T. Wlodarczyk

Dissertations, Theses, and Capstone Projects

Over the years, anti-cancer therapies have improved the overall survival rate of patients. Nevertheless, the traditional free drug therapies still suffer from side effects and systemic toxicity, resulting in low drug dosages in the clinic. This often leads to suboptimal drug concentrations reaching cancer cells, contributing to treatment failure and drug resistance. Among available anti-cancer therapies, metallodrugs are of great interest. Platinum (II)-based agents are highly potent and are used to treat many cancers, including ovarian cancer (OC). Cisplatin (cis-diaminedichloroplatinum (II)) is the first Food and Drug Administration (FDA)-approved metallodrug for treatment of solid tumors, and its mechanism …


Synthesis, Characterization And Applications Of Peptide-Coated Nanoparticles, Mina Sadat Poursharifi Sep 2021

Synthesis, Characterization And Applications Of Peptide-Coated Nanoparticles, Mina Sadat Poursharifi

Dissertations, Theses, and Capstone Projects

Ovarian Cancer (OC) is the most lethal female malignancy worldwide, mainly due to its high recurrence rate and poor diagnosis. Most patients present with late stage of the disease, and less than 25% of patients survive the five years mark. Nanotherapy provides significant and unique benefits for drug efficacy, as nanoparticles (NPs) can increase the solubility, bioavailability, and permeability of many potent drugs. Poly(lactic-co-glycolic acid) (PLGA) is one of the most successful biodegradable polymers used in NPs formulations, mainly due to its biocompatibility and biodegradability. Polyethylene glycol (PEG) is one of the most commonly used moieties to prolong the NPs …


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang Sep 2021

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


Human Ace2‑Functionalized Gold “Virus‑Trap” Nanostructures For Accurate Capture Of Sars‑Cov‑2 And Single‑Virus Sers Detection, Yong Yang, Yusi Peng, Chenglong Lin, Li Long, Jingying Hu, Jun He, Hui Zeng, Zhengren Huang, Zhi-Yuan Li, Masaki Tanemura, Jianlin Shi, John R. Lombardi, Xiaoying Luo Apr 2021

Human Ace2‑Functionalized Gold “Virus‑Trap” Nanostructures For Accurate Capture Of Sars‑Cov‑2 And Single‑Virus Sers Detection, Yong Yang, Yusi Peng, Chenglong Lin, Li Long, Jingying Hu, Jun He, Hui Zeng, Zhengren Huang, Zhi-Yuan Li, Masaki Tanemura, Jianlin Shi, John R. Lombardi, Xiaoying Luo

Publications and Research

The current COVID-19 pandemic urges the extremely sensitive and prompt detection of SARS-CoV-2 virus. Here, we present a Human Angiotensin-converting-enzyme 2 (ACE2)-functionalized gold “virus traps” nanostructure as an extremely sensitive SERS biosensor, to selectively capture and rapidly detect S-protein expressed coronavirus, such as the current SARS-CoV-2 in the contaminated water, down to the single-virus level. Such a SERS sensor features extraordinary 106- fold virus enrichment originating from high-affinity of ACE2 with S protein as well as “virus-traps” composed of oblique gold nanoneedles, and 109- fold enhancement of Raman signals originating from multicomponent SERS effects. Furthermore, the identification standard of virus …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Nature-Inspired Electrode Materials For Next Generation Sustainable Energy Storage, Mikhail Miroshnikov Jun 2020

Nature-Inspired Electrode Materials For Next Generation Sustainable Energy Storage, Mikhail Miroshnikov

Dissertations, Theses, and Capstone Projects

Despite revolutionizing the world of portable electronics, the contemporary lithium-ion battery (LIB) suffers from challenges associated with the cost, safety, and environmental impact of transition metal oxide-based intercalation cathodes. To alleviate these issues, naturally occurring organic molecules may serve as sustainable alternatives to traditional inorganic cathode materials. The electrochemical properties of organic compounds are derived from redox-active functional groups containing oxygen, nitrogen and sulfur. Additionally, these functional groups are capable of coordinating metal ions beyond lithium, allowing for compatibility with sodium-ion batteries (SIBs) and other earth abundant metal-based energy storage systems. However, despite competitive performance against commercialized cathode materials, much …


Developing A Dissociative Nanocontainer For Peptide Drug Delivery, Michael Patrick Kelly Sep 2019

Developing A Dissociative Nanocontainer For Peptide Drug Delivery, Michael Patrick Kelly

Dissertations, Theses, and Capstone Projects

The potency and specificity of bioactive peptides have propelled these agents to the forefront of pharmacological research. However, delivery of peptides to their molecular target in cells is a major obstacle to their widespread application. A Trojan Horse strategy of packaging a bioactive peptide within a modified protein cage to protect it during transport, and releasing it at the target site, is a promising delivery method. Recent work has demonstrated that the viral capsid of the P22 bacteriophage can be loaded with an arbitrary, genetically-encoded peptide, and externally decorated with a cell-penetrating peptide, such as HIV-Tat, to translocate across in …


All-Optical Control Of Lead Halide Perovskite Microlasers, Nan Zhang, Yubin Fan, Kaiyang Wang, Zhiyuan Gu, Yuhan Wang, Li Ge, Shumin Xiao, Qinghai Song Apr 2019

All-Optical Control Of Lead Halide Perovskite Microlasers, Nan Zhang, Yubin Fan, Kaiyang Wang, Zhiyuan Gu, Yuhan Wang, Li Ge, Shumin Xiao, Qinghai Song

Publications and Research

Lead halide perovskites based microlasers have recently shown their potential in nanophotonics. However, up to now, all of the perovskite microlasers are static and cannot be dynamically tuned in use. Herein, we demonstrate a robust mechanism to realize the alloptical control of perovskite microlasers. In lead halide perovskite microrods, deterministic mode switching takes place as the external excitation is increased: the onset of a new lasing mode switches off the initial one via a negative power slope, while the main laser characteristics are well kept. This mode switching is reversible with the excitation and has been explained via cross-gain saturation. …


Å-Indentation For Non-Destructive Elastic Moduli Measurements Of Supported Ultra-Hard Ultra-Thin Films And Nanostructures, Filippo Cellini, Yang Gao, Elisa Riedo Mar 2019

Å-Indentation For Non-Destructive Elastic Moduli Measurements Of Supported Ultra-Hard Ultra-Thin Films And Nanostructures, Filippo Cellini, Yang Gao, Elisa Riedo

Publications and Research

During conventional nanoindentation measurements, the indentation depths are usually larger than 1–10 nm, which hinders the ability to study ultra-thin films (<10 >nm) and supported atomically thin two-dimensional (2D) materials. Here, we discuss the development of modulated Å-indentation to achieve sub-Å indentations depths during force-indentation measurements while also imaging materials with nanoscale resolution. Modulated nanoindentation (MoNI) was originally invented to measure the radial elasticity of multi-walled nanotubes. w, by using extremely small amplitude oscillations (<<1 Å) at high frequency, and stiff cantilevers, we show how modulated nano/Å-indentation (MoNI/ÅI) enables non-destructive measurements of the contact stiffness and indentation modulus of ultra-thin ultra-stiff films, including CVD diamond films (~1000 GPa stiffness), as well as the transverse modulus of 2D materials. Our analysis demonstrates that in presence of a standard laboratory noise floor, the signal to noise ratio of MoNI/ÅI implemented with a commercial atomic force microscope (AFM) is such that a dynamic range of 80 dB –– achievable with commercial Lock-in amplifiers –– is sufficient to observe superior indentation curves, having indentation depths as small as 0.3 Å, resolution in indentation <0.05 Å, and in normal load <0.5 nN. Being implemented on a standard AFM, this method has the potential for a broad applicability.


Strategies Involving The Food-Derived Agent Curcumin To Eliminate Brain Cancer, Sumit Mukherjee Sep 2018

Strategies Involving The Food-Derived Agent Curcumin To Eliminate Brain Cancer, Sumit Mukherjee

Dissertations, Theses, and Capstone Projects

Glioblastoma (GBM) is one of the most deadly forms of cancer with a mean 5-year survival rate of ≤5%. We have used the non-invasive strategy of long-term intranasal (IN) delivery of a glioblastoma-directed adduct of curcumin (CC), CC-CD68Ab, into the brain of murine GBM cell line GL261-implanted mice to study the therapeutic effect of CC on GBM remission. The treatment caused GBM tumor remission in 50% of GL261-implanted GBM mice. A similar rescue rate (60%) was also achieved through long-term intraperitoneal (i.p) infusion of a highly bioavailable phosphotidylcholine (PC)-encapsulated formulation of CC, Curcumin Phytosome Meriva (CCP), into the GL261-implanted GBM …


Bacterial Lps At The Immune Modulating Component In Juzen-Taiho-To, Diego Montenegro Feb 2018

Bacterial Lps At The Immune Modulating Component In Juzen-Taiho-To, Diego Montenegro

Dissertations, Theses, and Capstone Projects

Juzen-taiho-to (JTT) is an immune-boosting herbal formulation with an ideal balance of safety and efficacy. For example, JTT is clinically used in Japan to stimulate the immunological functions of cancer patients undergoing chemotherapy and radiation. Although the clinical effects of JTT are recognized, the active compounds and mechanism of action are unknown. The studies conducted previously in our laboratory associated several phytosterols and plant glycolipids with the potent immunostimulatory activity of JTT: namely, β-sitosteryl β-D-glucoside (BSSG), glucocerebroside (GluCer), digalactosyldiacylglycerol (DGDG) and monogalactosyldiacylglycerol (MGDG). However, these compounds, when further purified, exhibited little or no immunostimulatory activity. This suggested that the immunostimulatory …


Design Rules For The Nucleation, Growth, And Encapsulation Of Gold Nanoparticles With Applications To Cancer Imaging, Matthew A. Wall Feb 2016

Design Rules For The Nucleation, Growth, And Encapsulation Of Gold Nanoparticles With Applications To Cancer Imaging, Matthew A. Wall

Dissertations, Theses, and Capstone Projects

Surface-enhanced Raman scattering (SERS) nanoparticles are exciting candidates for high-precision cancer imaging due to their highly specific spectral signature (Raman “fingerprint”) and propensity for passive targeting of cancerous tissues. However, the signal intensity of currently available SERS nanoparticles is insufficient for cancer imaging via passive targeting in most solid tumors. The overarching aim of this body of work is to develop a new generation of SERS nanoparticles with sufficiently low limits of detection to enable robust detection of various solid tumors in vivo.

The complexity of SERS nanoparticles requires significant advances to the theoretical and experimental understanding of metal …


Synthesis And Characterization Of Nanostructured Nickel Diselenide Nise2 From The Decomposition Of Nickel Acetate, (Ch3co2)2ni, Ming Yin, Stephen O'Brien Aug 2014

Synthesis And Characterization Of Nanostructured Nickel Diselenide Nise2 From The Decomposition Of Nickel Acetate, (Ch3co2)2ni, Ming Yin, Stephen O'Brien

Publications and Research

Solution processed NiSe2 nanorods were synthesized by a modified colloidal synthesis technique, by chemical reaction of TOPSe and nickel acetate at 150 ∘C. The rods exist as an oleic acid ligand stabilized solution, with oleic acid acting as a capping group. Structural characterization by X-ray diffraction and transmission electron microscopy indicates that the particles are rod-like shaped crystals with a high and relatively constant aspect ratio (30 : 1). TEM shows that the width and the length of the nanorods are in the range 10–20nm and 300–350 nm, respectively. XRD indicates that the nanorods are pure and well crystallized. The …