Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medical Molecular Biology

Characterizing The Response Of Multidrug-Resistant Klebsiella Pneumoniae Species To The Application Of A Phage Cocktail, Steven Liu Jun 2014

Characterizing The Response Of Multidrug-Resistant Klebsiella Pneumoniae Species To The Application Of A Phage Cocktail, Steven Liu

Symposium

Project Summary: The application of bacteriophages to treat bacterial infections is known as phage therapy, which takes advantage of bacteriophage’s natural ability to infect and lyse bacterial hosts. Phages have been shaped by billions of years of evolution to be highly specialized deliverers of bactericidal agents to the cytoplasm of their target bacteria. Ever since discovery of bacteriophages in 1915, phage therapy was recognized as a potentially powerful tool for eliminating bacterial infections. The effectiveness of phage therapy can be increased by creating a mixture of multiple phages to target a wider variety of bacterial strains. Furthermore, phage therapy has …


Associations Between Alcohol Consumption And Fasting Blood Glucose In Young Adults, Julie Ann Lucca Jun 2013

Associations Between Alcohol Consumption And Fasting Blood Glucose In Young Adults, Julie Ann Lucca

Master's Theses

Current research shows moderate alcohol consumption is associated with decreased risk of diabetes and excessive consumption or binge drinking can cause insulin resistance and diabetes. In 2010, diabetes was the seventh leading cause of death in the United Statesand was responsible for significant health complications: blindness, kidney failure, and limb amputations, and is a large national economic burden. Fasting blood glucose (FBG) is a tool used to help diagnose diabetes. Abnormally high FBG, ≥100 mg/dl, is indicative of diabetes and pre-diabetes. Few studies have observed diabetic prevalence among young adults or college students. Studying young adults can help provide added …


Development Of A Protocol To Measure Gene Expression In The Mouse Tibia, Daniel Hoover Jun 2012

Development Of A Protocol To Measure Gene Expression In The Mouse Tibia, Daniel Hoover

Biomedical Engineering

Numerous molecular factors active in bone tissue direct fracture repair and remodeling which can be altered by disease conditions such as Peripheral Arterial Disease (PAD) and Osteoporosis. Methods of molecular biology are commonly applied to investigate the expression and role of these molecular factors. This project presents a robust three-step protocol for examining gene expression in the mouse tibia. The protocol begins with isolating RNA from a flash frozen tibia sample. The isolated RNA is reverse transcribed into cDNA. Finally, PCR is performed to indentify expressed genes. Establishing this protocol will allow further research into the mechanisms of bone remodeling …


Ischemia Impairs Vasodilation In Skeletal Muscle Resistance Artery, Kyle Remington Struthers Jun 2011

Ischemia Impairs Vasodilation In Skeletal Muscle Resistance Artery, Kyle Remington Struthers

Master's Theses

Functional vasodilation in arterioles is impaired with chronic ischemia. We sought to examine the impact of chronic ischemia and age on skeletal muscle resistance artery function. To examine the impact of chronic ischemia, the femoral artery was resected from young (2-3mo) and adult (6-7mo) mice and the profunda femoris artery diameter was measured at rest and following gracilis muscle contraction 14 days later using intravital microscopy. Functional vasodilation was significantly impaired in ischemic mice (14.4±4.6% vs. 137.8±14.3%, p<0.0001 n=8) and non-ischemic adult mice (103.0±9.4% vs. 137.8±14.3%, p=0.05 n=10). In order to analyze the cellular mechanisms of the impairment, a protocol was developed to apply pharmacological agents to the experimental preparation while maintaining tissue homeostasis. Endothelial and smooth muscle dependent vasodilation were impaired with ischemia, 39.6 ± 13.6% vs. 80.5 ± 11.4% and 43.0 ± 11.7% vs. 85.1 ± 10.5%, respectively. From this data, it can be supported that smooth muscle dysfunction is the reason for the observed impairment in arterial vasodilation.