Open Access. Powered by Scholars. Published by Universities.®

Medical Genetics Commons

Open Access. Powered by Scholars. Published by Universities.®

Metabolism

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 63

Full-Text Articles in Medical Genetics

The Role Of Obesity In Macrophage-Mediated Mechanisms Promoting Early-Onset Colon Cancer., Katharina Marietta Scheurlen May 2022

The Role Of Obesity In Macrophage-Mediated Mechanisms Promoting Early-Onset Colon Cancer., Katharina Marietta Scheurlen

Electronic Theses and Dissertations

Early-onset colon cancer (EOCC) is a leading cause of cancer death among people younger than 50 years of age in the United States and is associated with metabolic dysfunction and obesity. Anti-inflammatory tumor-associated macrophages (TAM) and low Peroxisome Proliferator Activated Receptor Gamma (PPARγ) gene expression in colon cancer (CC) tissue promote tumor progression and decreased patient survival. Obesity-related hormones, such as leptin and adiponectin, have the potential to affect gene expression in TAM to promote CC progression and thereby link obesity and EOCC. The aim of this project was to identify target genes in human CC and to investigate the …


Epigenetic Pathogenesis Of Neurological Disorders In Utero And Considerations For Genetic Counseling, Lauren Juga Apr 2022

Epigenetic Pathogenesis Of Neurological Disorders In Utero And Considerations For Genetic Counseling, Lauren Juga

Senior Honors Theses

Epigenetic modifications are a major focus of study in the pathogenesis of many disorders regarding metabolism, aging, neurodevelopment, and neurodegeneration. Epigenetic mechanisms are present throughout life but are especially vital to guiding fetal development. The precise timing of gene activation and deactivation guides stem cell differentiation through each embryonic stage. After exposure to environmental stimuli, gene expression can be altered by transcription factors, resulting in observable phenotypes and even pathology. Here, the epigenetic mechanisms responsible for the pathogenesis of neurodevelopmental and neuropsychiatric disorders are explored in response to environmental perturbations in utero. The present goal is to identify correlations between …


Apoe And Alzheimer’S Disease: Neuroimaging Of Metabolic And Cerebrovascular Dysfunction, Jason A. Brandon, Brandon C. Farmer, Holden C. Williams, Lance A. Johnson Jun 2018

Apoe And Alzheimer’S Disease: Neuroimaging Of Metabolic And Cerebrovascular Dysfunction, Jason A. Brandon, Brandon C. Farmer, Holden C. Williams, Lance A. Johnson

Physiology Faculty Publications

Apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for late onset Alzheimer’s Disease (AD), and is associated with impairments in cerebral metabolism and cerebrovascular function. A substantial body of literature now points to E4 as a driver of multiple impairments seen in AD, including blunted brain insulin signaling, mismanagement of brain cholesterol and fatty acids, reductions in blood brain barrier (BBB) integrity, and decreased cerebral glucose uptake. Various neuroimaging techniques, in particular positron emission topography (PET) and magnetic resonance imaging (MRI), have been instrumental in characterizing these metabolic and vascular deficits associated with this important AD risk factor. In …


Metronidazole Metabolism In Neonates And The Interplay Between Ontogeny And Genetic Variation., Laura A. Wang, Daniel Gonzalez, J Steven Leeder, Rachel F. Tyndale, Robin E. Pearce, Daniel K. Benjamin, Gregory L. Kearns, Michael Cohen-Wolkowiez, Best Pharmaceuticals For Children Act-Pediatric Trials Network Steering Committee Feb 2017

Metronidazole Metabolism In Neonates And The Interplay Between Ontogeny And Genetic Variation., Laura A. Wang, Daniel Gonzalez, J Steven Leeder, Rachel F. Tyndale, Robin E. Pearce, Daniel K. Benjamin, Gregory L. Kearns, Michael Cohen-Wolkowiez, Best Pharmaceuticals For Children Act-Pediatric Trials Network Steering Committee

Manuscripts, Articles, Book Chapters and Other Papers

No abstract provided.


Links Between Anr And Quorum Sensing In Pseudomonas Aeruginosa Biofilms, John H. Hammond, Emily F. Dolben, T. Jarrod Smith, Sabin Bhuju, Deborah Hogan Jun 2015

Links Between Anr And Quorum Sensing In Pseudomonas Aeruginosa Biofilms, John H. Hammond, Emily F. Dolben, T. Jarrod Smith, Sabin Bhuju, Deborah Hogan

Dartmouth Scholarship

In Pseudomonas aeruginosa, the transcription factor Anr controls the cellular response to low oxygen or anoxia. Anr activity is high in oxygen-limited environments, including biofilms and populations associated with chronic infections, and Anr is necessary for persistence in a model of pulmonary infection. In this study, we characterized the Anr regulon in biofilm-grown cells at 1% oxygen in the laboratory strain PAO1 and in a quorum sensing (QS)-deficient clinical isolate, J215. As expected, transcripts related to denitrification, arginine fermentation, high-affinity cytochrome oxidases, and CupA fimbriae were lower in the Δanr derivatives. In addition, we observed that transcripts associated with quorum …


Systems Level Analysis Of Systemic Sclerosis Shows A Network Of Immune And Profibrotic Pathways Connected With Genetic Polymorphisms, J. Matthew Mahoney, Jaclyn Taroni, Viktor Martyanov, Tammara A. A. Wood, Casey S. Greene, Patricia A. Pioli, Monique E. Hinchcliff, Michael L. Whitfield Jan 2015

Systems Level Analysis Of Systemic Sclerosis Shows A Network Of Immune And Profibrotic Pathways Connected With Genetic Polymorphisms, J. Matthew Mahoney, Jaclyn Taroni, Viktor Martyanov, Tammara A. A. Wood, Casey S. Greene, Patricia A. Pioli, Monique E. Hinchcliff, Michael L. Whitfield

Dartmouth Scholarship

Systemic sclerosis (SSc) is a rare systemic autoimmune disease characterized by skin and organ fibrosis. The pathogenesis of SSc and its progression are poorly understood. The SSc intrinsic gene expression subsets (inflammatory, fibroproliferative, normal-like, and limited) are observed in multiple clinical cohorts of patients with SSc. Analysis of longitudinal skin biopsies suggests that a patient's subset assignment is stable over 6-12 months. Genetically, SSc is multi-factorial with many genetic risk loci for SSc generally and for specific clinical manifestations. Here we identify the genes consistently associated with the intrinsic subsets across three independent cohorts, show the relationship between these genes …


Analysis Of Clock-Regulated Genes In Neurospora Reveals Widespread Posttranscriptional Control Of Metabolic Potential, Jennifer M. M. Hurley, Arko Dasgupta, Jillian M. Emerson, Xiaoying Zhou, Carol S. Ringelberg, Nicole Knabe Dec 2014

Analysis Of Clock-Regulated Genes In Neurospora Reveals Widespread Posttranscriptional Control Of Metabolic Potential, Jennifer M. M. Hurley, Arko Dasgupta, Jillian M. Emerson, Xiaoying Zhou, Carol S. Ringelberg, Nicole Knabe

Dartmouth Scholarship

Neurospora crassa has been for decades a principal model for filamentous fungal genetics and physiology as well as for understanding the mechanism of circadian clocks. Eukaryotic fungal and animal clocks comprise transcription-translation-based feedback loops that control rhythmic transcription of a substantial fraction of these transcriptomes, yielding the changes in protein abundance that mediate circadian regulation of physiology and metabolism: Understanding circadian control of gene expression is key to understanding eukaryotic, including fungal, physiology. Indeed, the isolation of clock-controlled genes (ccgs) was pioneered in Neurospora where circadian output begins with binding of the core circadian transcription factor WCC to a subset …


E2f4 Regulatory Program Predicts Patient Survival Prognosis In Breast Cancer, Sari S. Khaleel, Erik H. Andrews, Matthew Ung, James Direnzo, Chao Chung Dec 2014

E2f4 Regulatory Program Predicts Patient Survival Prognosis In Breast Cancer, Sari S. Khaleel, Erik H. Andrews, Matthew Ung, James Direnzo, Chao Chung

Dartmouth Scholarship

Genetic and molecular signatures have been incorporated into cancer prognosis prediction and treatment decisions with good success over the past decade. Clinically, these signatures are usually used in early-stage cancers to evaluate whether they require adjuvant therapy following surgical resection. A molecular signature that is prognostic across more clinical contexts would be a useful addition to current signatures. We defined a signature for the ubiquitous tissue factor, E2F4, based on its shared target genes in multiple tissues. These target genes were identified by chromatin immunoprecipitation sequencing (ChIP-seq) experiments using a probabilistic method. We then computationally calculated the regulatory activity score …


Analysis Of Candida Albicans Mutants Defective In The Cdk8 Module Of Mediator Reveal Links Between Metabolism And Biofilm Formation, Allia K. Lindsay, Diana K. Morales, Zhongle Liu, Nora Grahl, Anda Zhang, Sven D. Willger, Lawrence C. Myers, Deborah A. Hogan Oct 2014

Analysis Of Candida Albicans Mutants Defective In The Cdk8 Module Of Mediator Reveal Links Between Metabolism And Biofilm Formation, Allia K. Lindsay, Diana K. Morales, Zhongle Liu, Nora Grahl, Anda Zhang, Sven D. Willger, Lawrence C. Myers, Deborah A. Hogan

Dartmouth Scholarship

Candida albicans biofilm formation is a key virulence trait that involves hyphal growth and adhesin expression. Pyocyanin (PYO), a phenazine secreted by Pseudomonas aeruginosa, inhibits both C. albicans biofilm formation and development of wrinkled colonies. Using a genetic screen, we identified two mutants, ssn3Δ/Δ and ssn8Δ/Δ, which continued to wrinkle in the presence of PYO. Ssn8 is a cyclin-like protein and Ssn3 is similar to cyclin-dependent kinases; both proteins are part of the heterotetrameric Cdk8 module that forms a complex with the transcriptional co-regulator, Mediator. Ssn3 kinase activity was also required for PYO sensitivity as a kinase dead mutant maintained …


Pilot Study Of Cyp2b6 Genetic Variation To Explore The Contribution Of Nitrosamine Activation To Lung Carcinogenesis, Catherine Wassenaar, Qiong Dong, Christopher Amos, Margaret Spitz, Rachel F. Tyndale Apr 2013

Pilot Study Of Cyp2b6 Genetic Variation To Explore The Contribution Of Nitrosamine Activation To Lung Carcinogenesis, Catherine Wassenaar, Qiong Dong, Christopher Amos, Margaret Spitz, Rachel F. Tyndale

Dartmouth Scholarship

We explored the contribution of nitrosamine metabolism to lung cancer in a pilot investigation of genetic variation in CYP2B6, a high-affinity enzymatic activator of tobacco-specific nitrosamines with a negligible role in nicotine metabolism. Previously we found that variation in CYP2A6 and CHRNA5-CHRNA3-CHRNB4 combined to increase lung cancer risk in a case-control study in European American ever-smokers (n = 860). However, these genes are involved in the pharmacology of both nicotine, through which they alter smoking behaviours, and carcinogenic nitrosamines. Herein, we separated participants by CYP2B6 genotype into a high- vs. low-risk group (*1/*1 + *1/*6 vs. *6/*6). Odds ratios estimated …


Scfslimb Ubiquitin Ligase Suppresses Condensin Ii–Mediated Nuclear Reorganization By Degrading Cap-H2, Daniel W. Buster, Scott G. Daniel, Huy Q. Nguyen, Sarah L. Windler, Lara C. Skwarek, Maureen Peterson Jan 2013

Scfslimb Ubiquitin Ligase Suppresses Condensin Ii–Mediated Nuclear Reorganization By Degrading Cap-H2, Daniel W. Buster, Scott G. Daniel, Huy Q. Nguyen, Sarah L. Windler, Lara C. Skwarek, Maureen Peterson

Dartmouth Scholarship

Condensin complexes play vital roles in chromosome condensation during mitosis and meiosis. Condensin II uniquely localizes to chromatin throughout the cell cycle and, in addition to its mitotic duties, modulates chromosome organization and gene expression during interphase. Mitotic condensin activity is regulated by phosphorylation, but mechanisms that regulate condensin II during interphase are unclear. Here, we report that condensin II is inactivated when its subunit Cap-H2 is targeted for degradation by the SCF(Slimb) ubiquitin ligase complex and that disruption of this process dramatically changed interphase chromatin organization. Inhibition of SCF(Slimb) function reorganized interphase chromosomes into dense, compact domains and disrupted …


Nucleic Acid Oxidation In Human Health And Disease, Mu-Rong Chao, Pavel Rossner Jr., Siamak Haghdoost, Hueiwang Anna Jeng, Chiung-Wen Hu Jan 2013

Nucleic Acid Oxidation In Human Health And Disease, Mu-Rong Chao, Pavel Rossner Jr., Siamak Haghdoost, Hueiwang Anna Jeng, Chiung-Wen Hu

Community & Environmental Health Faculty Publications

No abstract provided.


Anti-Apoptotic Mcl-1 Localizes To The Mitochondrial Matrix And Couples Mitochondrial Fusion To Respiration, Rhonda Perciavalle Dec 2012

Anti-Apoptotic Mcl-1 Localizes To The Mitochondrial Matrix And Couples Mitochondrial Fusion To Respiration, Rhonda Perciavalle

Theses and Dissertations (ETD)

MCL-1, an anti-apoptotic BCL-2 family member that is essential for the survival of multiple cell lineages, is also among the most highly amplified genes in cancer. Although MCL-1 is known to oppose cell death, precisely how it functions to promote survival of normal and malignant cells is poorly understood. Here, I report that different forms of MCL-1 reside in distinct mitochondrial locations and exhibit separable functions. On the outer mitochondrial membrane, a MCL-1 isoform acts like other anti-apoptotic BCL-2 molecules to antagonize apoptosis, whereas an amino-terminally truncated isoform of MCL-1 that is imported into the mitochondrial matrix is necessary to …


Chromosome Missegregation In Human Cells Arises Through Specific Types Of Kinetochore–Microtubule Attachment Errors, Sarah L. Thompson, Duane A. Compton Nov 2011

Chromosome Missegregation In Human Cells Arises Through Specific Types Of Kinetochore–Microtubule Attachment Errors, Sarah L. Thompson, Duane A. Compton

Dartmouth Scholarship

Most solid tumors are aneuploid, and many missegregate chromosomes at high rates in a phenomenon called chromosomal instability (CIN). CIN reflects the erosion of mitotic fidelity, and it correlates with poor patient prognosis and drug resistance. The most common mechanism causing CIN is the persistence of improper kinetochore–microtubule attachments called merotely. Chromosomes with merotelic kinetochores often manifest as lagging chromosomes in anaphase, suggesting that lagging chromosomes fail to segregate properly. However, it remains unknown whether the lagging chromosomes observed in anaphase segregate to the correct or incorrect daughter cell. To address this question, we tracked the segregation of a single …


Non-Identity-Mediated Crispr-Bacteriophage Interaction Mediated Via The Csy And Cas3 Proteins, Kyle C. Cady, George A. O'Toole Mar 2011

Non-Identity-Mediated Crispr-Bacteriophage Interaction Mediated Via The Csy And Cas3 Proteins, Kyle C. Cady, George A. O'Toole

Dartmouth Scholarship

Studies of the Escherichia, Neisseria, Thermotoga, and Mycobacteria clustered regularly interspaced short palindromic repeat (CRISPR) subtypes have resulted in a model whereby CRISPRs function as a defense system against bacteriophage infection and conjugative plasmid transfer. In contrast, we previously showed that the Yersinia-subtype CRISPR region of Pseudomonas aeruginosa strain UCBPP-PA14 plays no detectable role in viral immunity but instead is required for bacteriophage DMS3-dependent inhibition of biofilm formation by P. aeruginosa. The goal of this study is to define the components of the Yersinia-subtype CRISPR region required to mediate this bacteriophage-host interaction. We show that the Yersinia-subtype-specific CRISPR-associated (Cas) proteins …


Rho Activation Of Mdia Formins Is Modulated By An Interaction With Inverted Formin 2 (Inf2), Hua Sun, Johannes S. Schlondorff, Elizabeth J. Brown, Henry N. Higgs, Martin R. Pollak Feb 2011

Rho Activation Of Mdia Formins Is Modulated By An Interaction With Inverted Formin 2 (Inf2), Hua Sun, Johannes S. Schlondorff, Elizabeth J. Brown, Henry N. Higgs, Martin R. Pollak

Dartmouth Scholarship

Inverted formin 2 (INF2) encodes a member of the diaphanous subfamily of formin proteins. Mutations in INF2 cause human kidney disease characterized by focal and segmental glomerulosclerosis. Disease-causing mutations occur only in the diaphanous inhibitory domain (DID), suggesting specific roles for this domain in the pathogenesis of disease. In a yeast two-hybrid screen, we identified the diaphanous autoregulatory domains (DADs) of the mammalian diaphanous-related formins (mDias) mDia1, mDia2, and mDia 3 as INF2_DID-interacting partners. The mDias are Rho family effectors that regulate actin dynamics. We confirmed in vitro INF2_DID/mDia_DAD binding by biochemical assays, confirmed the in vivo interaction of these …


H-Ns Binding And Repression Of The Ctx Promoter In Vibrio Cholerae, Emily A. Stonehouse, Robin R. Hulbert, Melinda B. Nye, Karen Skorupski, Ronald K. Taylor Dec 2010

H-Ns Binding And Repression Of The Ctx Promoter In Vibrio Cholerae, Emily A. Stonehouse, Robin R. Hulbert, Melinda B. Nye, Karen Skorupski, Ronald K. Taylor

Dartmouth Scholarship

Expression of the ctx and tcp genes, which encode cholera toxin and the toxin coregulated pilus, the Vibrio cholerae O1 virulence determinants having the largest contribution to cholera disease, is repressed by the nucleoid-associated protein H-NS and activated by the AraC-like transcriptional regulator ToxT. To elucidate the molecular mechanism by which H-NS controls transcription of the ctxAB operon, H-NS repression and binding were characterized by using a promoter truncation series, gel mobility shift assays, and DNase I footprinting. Promoter regions found to be important for H-NS repression correlated with in vitro binding. Four main H-NS binding regions are present at …


Acat1 Gene Ablation Increases 24(S)-Hydroxycholesterol Content In The Brain And Ameliorates Amyloid Pathology In Mice With Ad, Elena Y. Bryleva, Maximillian A. Rogers, Catherine C. Y. Chang, Floyd Buen Feb 2010

Acat1 Gene Ablation Increases 24(S)-Hydroxycholesterol Content In The Brain And Ameliorates Amyloid Pathology In Mice With Ad, Elena Y. Bryleva, Maximillian A. Rogers, Catherine C. Y. Chang, Floyd Buen

Dartmouth Scholarship

Cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative diseases, including the abnormal accumulation of amyloid-beta, one of the pathological hallmarks of Alzheimer disease (AD). Acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) are two enzymes that convert free cholesterol to cholesteryl esters. ACAT inhibitors have recently emerged as promising drug candidates for AD therapy. However, how ACAT inhibitors act in the brain has so far remained unclear. Here we show that ACAT1 is the major functional isoenzyme in the mouse brain. ACAT1 gene ablation (A1-) in triple transgenic (i.e., 3XTg-AD) mice leads to more than 60% reduction in full-length human …


Proliferation Of Aneuploid Human Cells Is Limited By A P53-Dependent Mechanism, Sarah L. Thompson, Duane A. Compton Jan 2010

Proliferation Of Aneuploid Human Cells Is Limited By A P53-Dependent Mechanism, Sarah L. Thompson, Duane A. Compton

Dartmouth Scholarship

Most solid tumors are aneuploid, and it has been proposed that aneuploidy is the consequence of an elevated rate of chromosome missegregation in a process called chromosomal instability (CIN). However, the relationship of aneuploidy and CIN is unclear because the proliferation of cultured diploid cells is compromised by chromosome missegregation. The mechanism for this intolerance of nondiploid genomes is unknown. In this study, we show that in otherwise diploid human cells, chromosome missegregation causes a cell cycle delay with nuclear accumulation of the tumor suppressor p53 and the cyclin kinase inhibitor p21. Deletion of the p53 gene permits the accumulation …


Paracrine Sonic Hedgehog Signalling By Prostate Cancer Cells Induces Osteoblast Differentiation, Samantha M Zunich, Taneka Douglas, Maria Valdovinos, Tiffany Chang Mar 2009

Paracrine Sonic Hedgehog Signalling By Prostate Cancer Cells Induces Osteoblast Differentiation, Samantha M Zunich, Taneka Douglas, Maria Valdovinos, Tiffany Chang

Dartmouth Scholarship

Sonic hedgehog (Shh) and components of its signalling pathway have been identified in human prostate carcinoma and increased levels of their expression appear to correlate with disease progression and metastasis. The mechanism through which Shh signalling could promote metastasis in bone, the most common site for prostate carcinoma metastasis, has not yet been investigated. The present study determined the effect of Shh signalling between prostate cancer cells and pre-osteoblasts on osteoblast differentiation, a requisite process for new bone formation that characterizes prostate carcinoma metastasis.


Interconnections Between Sigma B, Agr, And Proteolytic Activity In Staphylococcus Aureus Biofilm Maturation, Katherine J. Lauderdale, Blaise R. Boles, Ambrose L. Cheung, Alexander R. Horswill Feb 2009

Interconnections Between Sigma B, Agr, And Proteolytic Activity In Staphylococcus Aureus Biofilm Maturation, Katherine J. Lauderdale, Blaise R. Boles, Ambrose L. Cheung, Alexander R. Horswill

Dartmouth Scholarship

Staphylococcus aureus is a proficient biofilm former on host tissues and medical implants. We mutagenized S. aureus strain SH1000 to identify loci essential for ica-independent mechanisms of biofilm maturation and identified multiple insertions in the rsbUVW-sigB operon. Following construction and characterization of a sigB deletion, we determined that the biofilm phenotype was due to a lack of sigma factor B (SigB) activity. The phenotype was conserved in a sigB mutant of USA300 strain LAC, a well-studied community-associated methicillin-resistant S. aureus isolate. We determined that agr RNAIII levels were elevated in the sigB mutants, and high levels of RNAIII expression are …


Identification Of Two Gene Clusters And A Transcriptional Regulator Required For Pseudomonas Aeruginosa Glycine Betaine Catabolism, Matthew J. Wargo, Benjamin S. Szwergold, Deborah A. Hogan Oct 2008

Identification Of Two Gene Clusters And A Transcriptional Regulator Required For Pseudomonas Aeruginosa Glycine Betaine Catabolism, Matthew J. Wargo, Benjamin S. Szwergold, Deborah A. Hogan

Dartmouth Scholarship

Glycine betaine (GB), which occurs freely in the environment and is an intermediate in the catabolism of choline and carnitine, can serve as a sole source of carbon or nitrogen in Pseudomonas aeruginosa. Twelve mutants defective in growth on GB as the sole carbon source were identified through a genetic screen of a nonredundant PA14 transposon mutant library. Further growth experiments showed that strains with mutations in two genes, gbcA (PA5410) and gbcB (PA5411), were capable of growth on dimethylglycine (DMG), a catabolic product of GB, but not on GB itself. Subsequent nuclear magnetic resonance (NMR) experiments with 1,2-(13)C-labeled choline …


Molecular Processes That Handle — And Mishandle — Dietary Lipids, Kevin Jon Williams Oct 2008

Molecular Processes That Handle — And Mishandle — Dietary Lipids, Kevin Jon Williams

Department of Medicine Faculty Papers

Overconsumption of lipid-rich diets, in conjunction with physical inactivity, disables and kills staggering numbers of people worldwide. Recent advances in our molecular understanding of cholesterol and triglyceride transport from the small intestine to the rest of the body provide a detailed picture of the fed/fasted and active/sedentary states. Key surprises include the unexpected nature of many pivotal molecular mediators, as well as their dysregulation — but possible reversibility — in obesity, diabetes, inactivity, and related conditions. These mechanistic insights provide new opportunities to correct dyslipoproteinemia, accelerated atherosclerosis, insulin resistance, and other deadly sequelae of overnutrition and underexertion.


Beta3 Integrin Haplotype Influences Gene Regulation And Plasma Von Willebrand Factor Activity, Katie E. Payne, Paul F. Bray, Peter J. Grant, Angela M. Carter Jun 2008

Beta3 Integrin Haplotype Influences Gene Regulation And Plasma Von Willebrand Factor Activity, Katie E. Payne, Paul F. Bray, Peter J. Grant, Angela M. Carter

Department of Medicine Faculty Papers

The Leu33Pro polymorphism of the gene encoding beta(3) integrin (ITGB3) is associated with acute coronary syndromes and influences platelet aggregation. Three common promoter polymorphisms have also been identified. The aims of this study were to (1) investigate the influence of the ITGB3 -400C/A, -425A/C and -468G/A promoter polymorphisms on reporter gene expression and nuclear protein binding and (2) determine genotype and haplotype associations with platelet alpha(IIb)beta(3) receptor density. Promoter haplotypes were introduced into an ITGB3 promoter-pGL3 construct by site directed mutagenesis and luciferase reporter gene expression analysed in HEL and HMEC-1 cells. Binding of nuclear proteins was assessed by electrophoretic …


Cif Is Negatively Regulated By The Tetr Family Repressor Cifr, Daniel P. Maceachran, Bruce A. Stanton, George A. O'Toole May 2008

Cif Is Negatively Regulated By The Tetr Family Repressor Cifr, Daniel P. Maceachran, Bruce A. Stanton, George A. O'Toole

Dartmouth Scholarship

We previously reported that the novel Pseudomonas aeruginosa toxin Cif is capable of decreasing apical membrane expression of the cystic fibrosis transmembrane conductance regulator (CFTR). We further demonstrated that Cif is capable of degrading the synthetic epoxide hydrolase (EH) substrate S-NEPC [(2S,3S)-trans-3-phenyl-2-oxiranylmethyl 4-nitrophenol carbonate], suggesting that Cif may be reducing apical membrane expression of CFTR via its EH activity. Here we report that Cif is capable of degrading the xenobiotic epoxide epibromohydrin (EBH) to its vicinal diol 3-bromo-1,2-propanediol. We also demonstrate that this epoxide is a potent inducer of cif gene expression. We show that the predicted TetR family transcriptional …


A Distinct Role For B1b Lymphocytes In T Cell-Independent Immunity, Kishore R. Alugupalli Apr 2008

A Distinct Role For B1b Lymphocytes In T Cell-Independent Immunity, Kishore R. Alugupalli

Department of Microbiology and Immunology Faculty Papers

Pathogenesis of infectious disease is not only determined by the virulence of the microbe but also by the immune status of the host. Vaccination is the most effective means to control infectious diseases. A hallmark of the adaptive immune system is the generation of B cell memory, which provides a long-lasting protective antibody response that is central to the concept of vaccination. Recent studies revealed a distinct function for B1b lymphocytes, a minor subset of mature B cells that closely resembles that of memory B cells in a number of aspects. In contrast to the development of conventional B cell …


A Developmental Cycle Masks Output From The Circadian Oscillator Under Conditions Of Choline Deficiency In Neurospora, Mi Shi, Luis F. Larrondo, Jennifer J. Loros, Jay C. Dunlap Dec 2007

A Developmental Cycle Masks Output From The Circadian Oscillator Under Conditions Of Choline Deficiency In Neurospora, Mi Shi, Luis F. Larrondo, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

In Neurospora, metabolic oscillators coexist with the circadian transcriptional/translational feedback loop governed by the FRQ (Frequency) and WC (White Collar) proteins. One of these, a choline deficiency oscillator (CDO) observed in chol-1 mutants grown under choline starvation, drives an uncompensated long-period developmental cycle ( approximately 60-120 h). To assess possible contributions of this metabolic oscillator to the circadian system, molecular and physiological rhythms were followed in liquid culture under choline starvation, but these only confirmed that an oscillator with a normal circadian period length can run under choline starvation. This finding suggested that long-period developmental cycles elicited by nutritional stress …


Bifa, A Cyclic-Di-Gmp Phosphodiesterase, Inversely Regulates Biofilm Formation And Swarming Motility By Pseudomonas Aeruginosa Pa14, Sherry L. Kuchma, Kimberly M. Brothers, Judith H. Merritt, Nicole T. Liberati, Frederick M. Ausubel, George A. O'Toole Jun 2007

Bifa, A Cyclic-Di-Gmp Phosphodiesterase, Inversely Regulates Biofilm Formation And Swarming Motility By Pseudomonas Aeruginosa Pa14, Sherry L. Kuchma, Kimberly M. Brothers, Judith H. Merritt, Nicole T. Liberati, Frederick M. Ausubel, George A. O'Toole

Dartmouth Scholarship

The intracellular signaling molecule, cyclic-di-GMP (c-di-GMP), has been shown to influence bacterial behaviors, including motility and biofilm formation. We report the identification and characterization of PA4367, a gene involved in regulating surface-associated behaviors in Pseudomonas aeruginosa. The PA4367 gene encodes a protein with an EAL domain, associated with c-di-GMP phosphodiesterase activity, as well as a GGDEF domain, which is associated with a c-di-GMP-synthesizing diguanylate cyclase activity. Deletion of the PA4367 gene results in a severe defect in swarming motility and a hyperbiofilm phenotype; thus, we designate this gene bifA, for biofilm formation. We show that BifA localizes to the inner …


P53 Activation By Knockdown Technologies, Mara E. Robu, Jon D. Larson, Aidas Nasevicius, Soraya Beiraghi, Charles Brenner May 2007

P53 Activation By Knockdown Technologies, Mara E. Robu, Jon D. Larson, Aidas Nasevicius, Soraya Beiraghi, Charles Brenner

Dartmouth Scholarship

Morpholino phosphorodiamidate antisense oligonucleotides (MOs) and short interfering RNAs (siRNAs) are commonly used platforms to study gene function by sequence-specific knockdown. Both technologies, however, can elicit undesirable off-target effects. We have used several model genes to study these effects in detail in the zebrafish, Danio rerio. Using the zebrafish embryo as a template, correct and mistargeting effects are readily discernible through direct comparison of MO-injected animals with well-studied mutants. We show here indistinguishable off-targeting effects for both maternal and zygotic mRNAs and for both translational and splice-site targeting MOs. The major off-targeting effect is mediated through p53 activation, as detected …


The Pseudomonas Aeruginosa Secreted Protein Pa2934 Decreases Apical Membrane Expression Of The Cystic Fibrosis Transmembrane Conductance Regulator, Daniel P. Maceachran, Siying Ye, Jennifer M. Bomberger, Deborah A. Hogan, Agnieszka Swiatecka-Urban, Bruce Stanton, George A. O'Toole May 2007

The Pseudomonas Aeruginosa Secreted Protein Pa2934 Decreases Apical Membrane Expression Of The Cystic Fibrosis Transmembrane Conductance Regulator, Daniel P. Maceachran, Siying Ye, Jennifer M. Bomberger, Deborah A. Hogan, Agnieszka Swiatecka-Urban, Bruce Stanton, George A. O'Toole

Dartmouth Scholarship

We previously reported that Pseudomonas aeruginosa PA14 secretes a protein that can reduce the apical membrane expression of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Here we report that we have used a proteomic approach to identify this secreted protein as PA2934 [corrected], and we have named the gene cif, for CFTR inhibitory factor. We demonstrate that Cif is a secreted protein and is found associated with outer membrane-derived vesicles. Expression of Cif in Escherichia coli and purification of the C-terminal six-His-tagged Cif protein showed that Cif is necessary and sufficient to mediate the reduction in apical membrane expression …