Open Access. Powered by Scholars. Published by Universities.®

Medical Biotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 50

Full-Text Articles in Medical Biotechnology

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Nanoparticles For Biomedical Applications, Joseph Kim May 2022

Nanoparticles For Biomedical Applications, Joseph Kim

Dissertations & Theses (Open Access)

This thesis presents development and evaluation of the potential of three new nanoparticles for biomedical applications. With the rapid growth of the field of nanoscience, researchers have explored developing nanoparticles for various biomedical applications, including imaging, therapy, and drug delivery. This thesis demonstrates the development of two C­60 fullerene based nanoparticles and one boron based nanoparticle to answer key questions related to their biological potential.

In the first part of the thesis, we describe synthesis and characterization of a pure boron nanoparticle containing asolectin phospholipid-based liposome construct prepared using a water-in-oil emulsion method, as a novel alternative agent for …


The Tin Man Needs A Heart: A Proposed Framework For The Regulation Of Bioprinted Organs, Linda Foit Apr 2022

The Tin Man Needs A Heart: A Proposed Framework For The Regulation Of Bioprinted Organs, Linda Foit

Fordham Law Review

Each day, seventeen people die in the United States while waiting for an organ transplant. At least part of this need could be met by bioprinting, a technology that allows the on-demand production of custom-sized organs from a patient’s own cells. The field of bioprinting is progressing rapidly: the first bioprinted organs have already entered the clinic. Yet, developers of bioprinted organs face significant uncertainty as to how their potentially lifesaving products will be regulated—and by which government agency. Such regulatory uncertainty has the potential to decrease investment and stifle innovation in this promising technological field. This Note examines how …


Effects Of Il-10 On Local Cell Populations And Functional Recovery Following Vml Injury, Zain Blackwell Dec 2021

Effects Of Il-10 On Local Cell Populations And Functional Recovery Following Vml Injury, Zain Blackwell

Biomedical Engineering Undergraduate Honors Theses

Volumetric muscle loss (VML) injuries are prevalent in both military personnel suffering from battlefield related incidents, and civilians following severe motor accidents. Despite its prevalence, VML has no pro-regenerative clinical treatments in place to recover some of the functional capabilities of the damaged muscle. Free flap grafting, debridement of damaged tissue, and physical therapy are the only clinical standards available that offer little functional recovery benefits, even after years of consistent treatment. In this study, anti-inflammatory cytokine interleukin-10 in conjunction with autologous minced muscle was assessed as a possible treatment for VML injuries and its influences on cellular behavior within …


The Development Of An Instrument To Measure Transdermal Hydrogen Sulfide As A Way To Evaluate Microvascular Health In Humans, Benjamin Thomas Matheson Jul 2021

The Development Of An Instrument To Measure Transdermal Hydrogen Sulfide As A Way To Evaluate Microvascular Health In Humans, Benjamin Thomas Matheson

Biomedical Engineering ETDs

Hydrogen sulfide (H2S) is a gasotransmitter critical in maintaining microcirculation homeostasis. Impaired microcirculation occurs in multiple disease states such as peripheral vascular disease, diabetes mellitus (DM), and hypertension. Early detection and identification of patients with DM who are at risk for heart attack, stroke and amputation due to microvascular disease is crucial. Human skin is an accessible vascular bed that provides an opportunity to non-invasively measure H2S, which could be used as a biomarker to evaluate microvascular health.

In this work, a novel H2S gas sensor, called the transdermal arterial gasotransmitter sensor (TAGSTM …


What Internal Variables Affect Sensorimotor Rhythm Brain-Computer Interface (Smr-Bci) Performance?, Alex J. Horowitz, Christoph Guger, Milena Korostenskaja Jun 2021

What Internal Variables Affect Sensorimotor Rhythm Brain-Computer Interface (Smr-Bci) Performance?, Alex J. Horowitz, Christoph Guger, Milena Korostenskaja

HCA Healthcare Journal of Medicine

In this review article, we aimed to create a summary of the effects of internal variables on the performance of sensorimotor rhythm-based brain computer interfaces (SMR-BCIs). SMR-BCIs can be potentially used for interfacing between the brain and devices, bypassing usual central nervous system output, such as muscle activity. The careful consideration of internal factors, affecting SMR-BCI performance, can maximize BCI application in both healthy and disabled people. Internal variables may be generalized as descriptors of the processes mainly dependent on the BCI user and/or originating within the user. The current review aimed to critically evaluate and summarize the currently accumulated …


What External Variables Affect Sensorimotor Rhythm Brain-Computer Interface (Smr-Bci) Performance?, Alex J. Horowitz, Christoph Guger, Milena Korostenskaja Jun 2021

What External Variables Affect Sensorimotor Rhythm Brain-Computer Interface (Smr-Bci) Performance?, Alex J. Horowitz, Christoph Guger, Milena Korostenskaja

HCA Healthcare Journal of Medicine

Sensorimotor rhythm-based brain-computer interfaces (SMR-BCIs) are used for the acquisition and translation of motor imagery-related brain signals into machine control commands, bypassing the usual central nervous system output. The selection of optimal external variable configuration can maximize SMR-BCI performance in both healthy and disabled people. This performance is especially important now when the BCI is targeted for everyday use in the environment beyond strictly regulated laboratory settings. In this review article, we summarize and critically evaluate the current body of knowledge pertaining to the effect of the external variables on SMR-BCI performance. When assessing the relationship between SMR-BCI performance and …


Handling And Manipulation Of Water- And Air- Borne Biological Samples Using Liquid-Infused Surfaces, Daniel P. Regan Apr 2021

Handling And Manipulation Of Water- And Air- Borne Biological Samples Using Liquid-Infused Surfaces, Daniel P. Regan

Electronic Theses and Dissertations

Research on novel materials to handling water- and airborne samples for biological threats analysis is in great demand due to the COVID-19 pandemic. Work conducted on a new field of material science, called liquid-infused surfaces, demonstrate strong potential for the handling and manipulation of biological samples. As a result of the field’s infancy, only a limited number of studies have explored how liquid-infused surfaces can apply droplet manipulation strategies to address real-world problems. Presented in this dissertation are two platforms that leverage liquid-infused surfaces to address the challenges associated with handling water- and airborne biological samples. When dealing with waterborne …


Development Of A Robust Methodology To Obtain And Assess Myogenic Precursor Cells For Their Use In Regenerative Therapies, Ricardo Lasa Mar 2021

Development Of A Robust Methodology To Obtain And Assess Myogenic Precursor Cells For Their Use In Regenerative Therapies, Ricardo Lasa

Master's Theses

Peripheral arterial occlusive disease (PAOD) is characterized by buildup of atherosclerotic plaque in peripheral arteries that leads to an occlusion that can interrupt the supply of blood to the peripheral tissue, causing downstream tissue ischemia/hypoxia. PAOD is estimated to affect over 200 million patients worldwide. Current surgical revascularization treatments can be effective in about half of the patient population, leading to a significant number of patients with no treatment options beyond pharmacological intervention and lifestyle modification. The decrease in blood flow downstream of the occlusion leads to increased blood pressure gradient in the microvasculature, specifically in vessels that connect arterial …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Fmri Feature Extraction Model For Adhd Classification Using Convolutional Neural Network, Senuri De Silva, Sanuwani Udara Dayarathna, Gangani Ariyarathne, Dulani Meedeniya, Sampath Jayarathna Jan 2021

Fmri Feature Extraction Model For Adhd Classification Using Convolutional Neural Network, Senuri De Silva, Sanuwani Udara Dayarathna, Gangani Ariyarathne, Dulani Meedeniya, Sampath Jayarathna

Computer Science Faculty Publications

Biomedical intelligence provides a predictive mechanism for the automatic diagnosis of diseases and disorders. With the advancements of computational biology, neuroimaging techniques have been used extensively in clinical data analysis. Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder, with the symptomology of inattention, impulsivity, and hyperactivity, in which early diagnosis is crucial to prevent unwelcome outcomes. This study addresses ADHD identification using functional magnetic resonance imaging (fMRI) data for the resting state brain by evaluating multiple feature extraction methods. The features of seed-based correlation (SBC), fractional amplitude of low-frequency fluctuation (fALFF), and regional homogeneity (ReHo) are comparatively applied to …


Modulation Of Ros In Nanosecond-Pulsed Plasma-Activated Media For Dosage-Dependent Cancer Cell Inactivation In Vitro, Chunqi Jiang, Esin Bengisu Sozer, Shutong Song, Nicola Lai, P. Thomas Vernier, Sigi Guo Nov 2020

Modulation Of Ros In Nanosecond-Pulsed Plasma-Activated Media For Dosage-Dependent Cancer Cell Inactivation In Vitro, Chunqi Jiang, Esin Bengisu Sozer, Shutong Song, Nicola Lai, P. Thomas Vernier, Sigi Guo

Bioelectrics Publications

Dosage control of reactive oxygen and nitrogen species (RONS) is critical to low-temperature plasma applications in cancer therapy. Production of RONS by atmospheric pressure, nonequilibrium plasmas in contact with liquid may be modulated via plasma conditions including plasma treatment time and pulse voltage and repetition frequency. In this study, a terephthalic acid-based probe was used to measure hydroxyl radicals [OHaq] in water exposed to plasma and to demonstrate that the OHag concentration increases linearly with treatment time. Fluorometric measurements of hydrogen peroxide concentration in plasma-activated water show a linear relationship between the H2O2 production …


A Framework For Heterologous Biosynthesis Of Natural Products In Mammalian Cells Via Polymer-Mediated Transfections, Logan Warriner Jan 2020

A Framework For Heterologous Biosynthesis Of Natural Products In Mammalian Cells Via Polymer-Mediated Transfections, Logan Warriner

Theses and Dissertations--Chemical and Materials Engineering

With the promise to treat a multi-faceted list of serious inherited and acquired diseases, such as cancer, neurodegenerative and infectious diseases, and inherited genetic indications, gene therapy has continued to push the boundaries of traditional medicine since its earliest implementation. While much progress has been made, clinical success has largely remained elusive. Immunogenicity, difficulty producing commercially relevant quantities, and having a limited genetic payload still limits the ability of viruses to act as directed delivery agents for genetic material. As such, researchers have turned to cationic synthetic materials as a means of delivering nucleic acids, which can circumvent the immune …


Medical Dental Device: Biogeneric Implant Prototype, Ibeth Erazo, Aneeza Hussain, Renata Budny, Gaffar Gailani Oct 2019

Medical Dental Device: Biogeneric Implant Prototype, Ibeth Erazo, Aneeza Hussain, Renata Budny, Gaffar Gailani

Publications and Research

Teeth are lost due to tooth decay, injury, disease, or other causes. Today, dental implants extend the range of care to a variety of patients undergoing necessary prosthodontic rehabilitation. If the benefits of such treatments are to be maximized, then implants must be selected on logical basis and placed within the context of the full range of treatment modalities. However, modern dental implant systems are based on multiple components often leading to micro-movements which cause stress on the bone or bacterial infections, both of which compromise the success of osseointegration and consequently jeopardize the whole implant adaptation. Thus, a new …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel

Honors Scholar Theses

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


Final Design Report For The Bioburden Pre-Cleaning Device And Dr. Mark Rasnake At The University Of Tennessee Medical Center, Katherine Elizabeth Stiles, Megan Pitz, Kayla Franklin, Simran Dayal, Austin Bullock May 2019

Final Design Report For The Bioburden Pre-Cleaning Device And Dr. Mark Rasnake At The University Of Tennessee Medical Center, Katherine Elizabeth Stiles, Megan Pitz, Kayla Franklin, Simran Dayal, Austin Bullock

Chancellor’s Honors Program Projects

No abstract provided.


A Fully-Flexible Solution-Processed Autonomous Glucose Indicator, Jonathan D. Yuen, Ankit Baingane, Qumrul Hasan, Lisa C. Shriver-Lake, Scott A. Walper, Daniel Zabetakis, Joyce C. Breger, David A. Stenger, Gymama Slaughter Jan 2019

A Fully-Flexible Solution-Processed Autonomous Glucose Indicator, Jonathan D. Yuen, Ankit Baingane, Qumrul Hasan, Lisa C. Shriver-Lake, Scott A. Walper, Daniel Zabetakis, Joyce C. Breger, David A. Stenger, Gymama Slaughter

Bioelectrics Publications

We present the first demonstration of a fully-flexible, self-powered glucose indicator system that synergizes two flexible electronic technologies: a flexible self-powering unit in the form of a biofuel cell, with a flexible electronic device - a circuit-board decal fabricated with biocompatible microbial nanocellulose. Our proof-of-concept device, comprising an enzymatic glucose fuel cell, glucose sensor and a LED indicator, does not require additional electronic equipment for detection or verification; and the entire structure collapses into a microns-thin, self-adhering, single-centimeter-square decal, weighing less than 40 mg. The flexible glucose indicator system continuously operates a light emitting diode (LED) through a capacitive charge/discharge …


Special Collection On Electroporation-Based Therapies: A Selection Of Papers From The Second World Congress On Electroporation, Richard Heller, Rafael V. Davalos Jan 2019

Special Collection On Electroporation-Based Therapies: A Selection Of Papers From The Second World Congress On Electroporation, Richard Heller, Rafael V. Davalos

Bioelectrics Publications

No abstract provided.


Towards An In Vitro Model Of Testing Osteoblast Cellular Function In Contact With Various Surfaces, Raheleh Miralami Dec 2018

Towards An In Vitro Model Of Testing Osteoblast Cellular Function In Contact With Various Surfaces, Raheleh Miralami

Theses & Dissertations

Past studies have shown that the success of total joint replacements depends on the biocompatibility of orthopaedic materials, which can be improved by modifying the implant surface. However, the exact roles of these modifications and their effective mechanisms are poorly understood. The objective of this study was to develop and evaluate a model system to investigate the impact of nano-structured surfaces, produced by the ion beam-assisted deposition (IBAD) technique, on biomarkers of osteointegration using an in vitro model. The IBAD technique was employed to deposit zirconium oxide (ZrO2), Titanium oxide (TiO2), and Titanium (Ti) nano-films on …


Preparation And Characterization Of Functionalized Heparin-Loaded Poly-Ɛ-Caprolactone Fibrous Mats To Prevent Infection With Human Papillomaviruses, Daniela Gonzalez, Jorge Ragusa, Peter C. Angeletti, Gustavo F. Larsen Jul 2018

Preparation And Characterization Of Functionalized Heparin-Loaded Poly-Ɛ-Caprolactone Fibrous Mats To Prevent Infection With Human Papillomaviruses, Daniela Gonzalez, Jorge Ragusa, Peter C. Angeletti, Gustavo F. Larsen

Department of Chemical and Biomolecular Engineering: Faculty Publications

In this study, heparin-loaded poly-ε-caprolactone (PCL) fibrous mats were prepared and characterized based on their physical, cytotoxic, thermal, and biological properties. The main objective of the work described here was to test the hypothesis that incorporation of heparin into a PCL carrier could serve as bio-compatible material capable of inhibiting Human Papillomavirus (HPV) infection. The idea of firmly anchoring heparin to capture soluble virus, vs. a slow heparin release to inhibit a virus in solution was tested. Thus, one material was produced via conventional heparin matrix encapsulation and electrohydrodynamic fiber processing in one step. A second type of material was …


Tumor Cell Death After Electrotransfer Of Plasmid Dna Is Associated With Cytosolic Dna Sensor Upregulation, Katarina Znidar, Masa Bosnjak, Nina Semenova, Olga N. Pakhomova, Loree Heller, Maja Cemazar Jan 2018

Tumor Cell Death After Electrotransfer Of Plasmid Dna Is Associated With Cytosolic Dna Sensor Upregulation, Katarina Znidar, Masa Bosnjak, Nina Semenova, Olga N. Pakhomova, Loree Heller, Maja Cemazar

Bioelectrics Publications

Cytosolic DNA sensors are a subgroup of pattern recognition receptors (PRRs) and are activated by the abnormal presence of the DNA in the cytosol. Their activation leads to the upregulation of pro-inflammatory cytokines and chemokines and can also induce cell death. The presence of cytosolic DNA sensors and inflammatory cytokines in TS/A murine mammary adenocarcinoma and WEHI 164 fibrosarcoma cells was demonstrated using real time reverse transcription polymerase chain reaction (RT-PCR), western blotting and enzyme-linked immunosorbent assay (ELISA). After electrotransfer of plasmid DNA (pDNA) using two pulse protocols, the upregulation of DNA-depended activator of interferon regulatory factor or Z-DNA binding …


Nano-Pulse Stimulation Ablates Orthotopic Rat Hepatocellular Carcinoma And Induces Innate And Adaptive Memory Immune Mechanisms That Prevent Recurrence, Brittany P. Lassiter, Siqi Guo, Stephen J. Beebe Jan 2018

Nano-Pulse Stimulation Ablates Orthotopic Rat Hepatocellular Carcinoma And Induces Innate And Adaptive Memory Immune Mechanisms That Prevent Recurrence, Brittany P. Lassiter, Siqi Guo, Stephen J. Beebe

Bioelectrics Publications

Nano-pulse stimulation (NPS), previously called nsPEFs, induced a vaccine-like effect after ablation of orthotopic N1-S1 hepatocellular carcinoma (HCC), protecting rats from subsequent challenges with N1-S1 cells. To determine immunity, immune cell phenotypes were analyzed in naïve, treated and protected rats. NPS provides a positive, post-ablation immuno-therapeutic outcome by alleviating immunosuppressive T regulatory cells (Treg) in the tumor microenvironment (TME), allowing dendritic cell influx and inducing dynamic changes in natural killer cells (NKs), NKT-cells and T-lymphocytes in blood, spleen and liver. NPS induced specific increases in NKs and NKT-cells expressing CD8 and activation receptors CD314-NKG2D and CD161 (NK1.1) in the TME …


A Scale Space Local Binary Pattern (Sslbp) – Based Feature Extraction Framework To Detect Bones From Knee Mri Scans, Jinyeong Mun Jan 2018

A Scale Space Local Binary Pattern (Sslbp) – Based Feature Extraction Framework To Detect Bones From Knee Mri Scans, Jinyeong Mun

Electronic Theses and Dissertations

The medical industry is currently working on a fully autonomous surgical system, which is considered a novel modality to go beyond technical limitations of conventional surgery. In order to apply an autonomous surgical system to knees, one of the primarily responsible areas for supporting the total weight of human body, accurate segmentation of bones from knee Magnetic Resonance Imaging (MRI) scans plays a crucial role. In this paper, we propose employing the Scale Space Local Binary Pattern (SSLBP) feature extraction, a variant of local binary pattern extractions, for detecting bones from knee images. The proposed methods consist of two phases. …


Achieving Totally Local Anticoagulation On Blood Contacting Devices, Rana Gbyli, Anna Mercaldi, Harihara Sundaram, Kagya Amoako Dec 2017

Achieving Totally Local Anticoagulation On Blood Contacting Devices, Rana Gbyli, Anna Mercaldi, Harihara Sundaram, Kagya Amoako

Mechanical and Industrial Engineering Faculty Publications

The recent years have witnessed an increased activity in biocompatibility research aimed at limiting biomaterial-induced blood coagulation. From 2008 to 2016, a total of $36,946,764.00 USD was awarded in grants to 213 research proposals and as large as 50.4% ($18,627,854.00) of that award monies were distributed to 101 proposals over the fiscal years of FY14 to FY16 alone. However, the complexity in blood responses to biomaterials, variability in blood function between individuals and animal species, and differences in medical device application and test setting all continue to pose difficulties in making a breakthrough in this field. This review focuses on …


Controllable Moderate Heating Enhances The Therapeutic Efficacy Of Irreversible Electroporation For Pancreatic Cancer, Chelsea M. Edelblute, James Hornef, Niculina I. Burcus, Thomas Norman, Stephen J. Beebe, Karl Schoenbach, Richard Heller, Chunqi Jiang, Sigi Guo Sep 2017

Controllable Moderate Heating Enhances The Therapeutic Efficacy Of Irreversible Electroporation For Pancreatic Cancer, Chelsea M. Edelblute, James Hornef, Niculina I. Burcus, Thomas Norman, Stephen J. Beebe, Karl Schoenbach, Richard Heller, Chunqi Jiang, Sigi Guo

Bioelectrics Publications

Irreversible electroporation (IRE) as a non-thermal tumor ablation technology has been studied for the treatment of pancreatic carcinoma and has shown a significant survival benefit. We discovered that moderate heating (MH) at 43°C for 1-2 minutes significantly enhanced ex vivo IRE tumor ablation of Pan02 cells by 5.67-fold at 750 V/cm and by 1.67-fold at 1500 V/cm. This amount of heating alone did not cause cell death. An integrated IRE system with controllable laser heating and tumor impedance monitoring was developed to treat mouse ectopic pancreatic cancer. With this novel IRE system, we were able to heat and maintain the …


Application Of Bioinstrumentation In Developing A Pressure Suit For Suborbital Flight, Pedro Llanos, Erik Seedhouse Sep 2016

Application Of Bioinstrumentation In Developing A Pressure Suit For Suborbital Flight, Pedro Llanos, Erik Seedhouse

Publications

This presentation features Embry-Riddle Aeronautical University's U-2 pressure suit. Built to be light and cost-effective, this suit is comfortable, comes in multiple sizes, operates in pressures up to 5 PSID, has an active airflow-based cooling system, and features bio-instrumentation to measure heart rate, breathing rate, skin temperature and other vitals.


Selecting Medical Hardware Using Pairwise Comparisons: A Patient's Perspective Of Cochlear Implant Device Selection, Timothy R. Anderson, Shabnam Razeghian Jahromi Sep 2016

Selecting Medical Hardware Using Pairwise Comparisons: A Patient's Perspective Of Cochlear Implant Device Selection, Timothy R. Anderson, Shabnam Razeghian Jahromi

Engineering and Technology Management Faculty Publications and Presentations

Selecting medical hardware can be a difficult and permanent decision for patients that they are often unprepared for. The authors explore the use of pairwise comparison techniques to better inform medical decision making in an application of choosing between three major cochlear implant manufacturers. This paper appears to be the first study to apply a pairwise comparison decision making approach for cochlear implant device selection. Also, unlike many medical decision making studies that are developed by the healthcare professional, this model and analysis was conducted entirely by the patient for the purpose of making the real-world decision of a device. …


Cartilage Engineering: Optimization Of Media For Chondrogenic Differentiation In Vitro, Evan Surma, Sherry L. Harbin, Hongji Zhang, Stacy Halum Aug 2016

Cartilage Engineering: Optimization Of Media For Chondrogenic Differentiation In Vitro, Evan Surma, Sherry L. Harbin, Hongji Zhang, Stacy Halum

The Summer Undergraduate Research Fellowship (SURF) Symposium

Lower back pain from intervertebral disc injury affects around 84% of the population at some point in their life, which at its worst may cause total immobilization. This pain can only be temporarily relieved by spinal fusion or intervertebral disc replacement; however, both of these cause loss of natural motion in patients by removing damaged fibrocartilage discs. While these techniques help mitigate pain briefly, no permanent solution exists currently to both relieve pain and preserve natural motion. My work may be a solution by eventually providing patient-specific implants that resemble native tissue in the regeneration process that could be absorbed …


Modeling Early Stage Bone Regeneration With Biomimetic Electrospun Fibrinogen Nanofibers And Adipose-Derived Mesenchymal Stem Cells, Michael P. Francis, Yas M. Moghaddam-White, Patrick C. Sachs, Matthew J. Beckman, Stephen M. Chen, Gary L. Bowlin, Lynne W. Elmore, Shawn E. Holt Jan 2016

Modeling Early Stage Bone Regeneration With Biomimetic Electrospun Fibrinogen Nanofibers And Adipose-Derived Mesenchymal Stem Cells, Michael P. Francis, Yas M. Moghaddam-White, Patrick C. Sachs, Matthew J. Beckman, Stephen M. Chen, Gary L. Bowlin, Lynne W. Elmore, Shawn E. Holt

Medical Diagnostics & Translational Sciences Faculty Publications

The key events of the earliest stages of bone regeneration have been described in vivo although not yet modeled in an in vitro environment, where mechanistic cell-matrix-growth factor interactions can be more effectively studied. Here, we explore an early-stage bone regeneration model where the ability of electrospun fibrinogen (Fg) nanofibers to regulate osteoblastogenesis between distinct mesenchymal stem cells populations is assessed. Electrospun scaffolds of Fg, polydioxanone (PDO), and a Fg:PDO blend were seeded with adipose-derived mesenchymal stem cells (ASCs) and grown for 7-21 days in osteogenic differentiation media or control growth media. Scaffolds were analyzed weekly for histologic and molecular …


Biodegradable Nano-Hybrid Polymer Composite Networks For Regulating Cellular Behavior, Charles Henley Sprague Aug 2015

Biodegradable Nano-Hybrid Polymer Composite Networks For Regulating Cellular Behavior, Charles Henley Sprague

Masters Theses

Photo-crosslinkable polymeric biomaterials have emerged in the field of biomedical research to promote tissue regeneration. For example, scaffolds that can be crosslinked and hardened in situ have been known to make suitable implant alternatives. Since injectable and photo-crosslinkable biomaterials offer the advantage of being minimally invasive, they have emerged to compete with autografts, a current highly invasive method to repair diseased tissue. A series of novel photo-crosslinkable, injectable, and biodegradable nano-hybrid polymers consisting of poly(ε-caprolactone fumarate) (PCLF) and polyhedral oligomeric silsesquioxane (POSS) has been synthesized in our laboratory via polycondensation. To engineer the material properties of the nano-hybrid networks, varied …