Open Access. Powered by Scholars. Published by Universities.®

Medical Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Medical Biochemistry

The Ability Of Simian Virus 40 Large T Antigen To Immortalize Primary Mouse Embryo Fibroblasts Cosegregates With Its Ability To Bind To P53., Jiyue Y. Zhu, Marina Abate, Philip W. Rice, Charles N. Cole Dec 1991

The Ability Of Simian Virus 40 Large T Antigen To Immortalize Primary Mouse Embryo Fibroblasts Cosegregates With Its Ability To Bind To P53., Jiyue Y. Zhu, Marina Abate, Philip W. Rice, Charles N. Cole

Dartmouth Scholarship

The large T antigen encoded by simian virus 40 (SV40) plays essential roles in the infection of permissive cells, leading to production of progeny virions, and in the infection of nonpermissive cells, leading to malignant transformation. Primary mouse embryo fibroblasts (MEFs) are nonpermissive for SV40, and infection by wild-type SV40 leads to immortalization and transformation of a small percentage of infected cells. We examined the ability of an extensive set of mutants whose lesions affect SV40 large T antigen to immortalize MEFs. We found that immortalization activity was retained by all mutants whose lesions are located upstream of codon 346. …


Lac+ Saccharomyces Cerevisiae, Robert C. Dickson, Kotikanyadanam K. Sreekrishna Sep 1991

Lac+ Saccharomyces Cerevisiae, Robert C. Dickson, Kotikanyadanam K. Sreekrishna

Molecular and Cellular Biochemistry Faculty Patents

The invention relates to novel, transformed strains of Lac+ Saccharomyces cerevisiae, capable of utilizing lactose as a sole carbon source, produced by inserting into the Saccharomyces cerevisiae a plasmid containing a lactose permease and a beta-galactosidase gene derived from Kluyveromyces lactis yeast.


Translocation Of The Glucose Transporter Glut4 In Cardiac Myocytes Of The Rat., Jan W. Slot, Hans J. Geuze, Sander Gigengack, David E. James, Gustav E. Lienhard Sep 1991

Translocation Of The Glucose Transporter Glut4 In Cardiac Myocytes Of The Rat., Jan W. Slot, Hans J. Geuze, Sander Gigengack, David E. James, Gustav E. Lienhard

Dartmouth Scholarship

The insulin-regulated glucose transporter GLUT4 was immunolocalized in rat cardiac muscle under conditions of basal and stimulated glucose uptake, achieved by fasting and a combined exercise/insulin stimulus, respectively. In basal myocytes there was very little (less than 1%) GLUT4 in the different domains of the plasma membrane (sarcolemma, intercalated disk, and transverse tubular system). GLUT4 was localized in small tubulo-vesicular elements that occur predominantly near the sarcolemma and the transverse tubular system and in the trans-Golgi region. Upon stimulation approximately 42% of GLUT4 was found in the plasma membrane. Each domain of the plasma membrane contributed equally to this effect. …


Mapping The Transcriptional Transactivation Function Of Simian Virus 40 Large T Antigen., Jiyue Y. Zhu, Philip W. Rice, Michele Chamberlain, Charles N. Cole Jun 1991

Mapping The Transcriptional Transactivation Function Of Simian Virus 40 Large T Antigen., Jiyue Y. Zhu, Philip W. Rice, Michele Chamberlain, Charles N. Cole

Dartmouth Scholarship

T antigen is able to transactivate gene expression from the simian virus 40 (SV40) late promoter and from several other viral and cellular promoters. Neither the mechanisms of transactivation by T antigen nor the regions of T antigen required for this activity have been determined. To address the latter point, we have measured the ability of a set of SV40 large T antigen mutants to stimulate gene expression in CV-1 monkey kidney cells from the SV40 late promoter and Rous sarcoma virus (RSV) long terminal repeat (LTR) promoter. Transactivation, although reduced, was retained by an N-terminal 138-amino-acid fragment of T …


Neurospora Crassa Clock-Controlled Genes Are Regulated At The Level Of Transcription., Jennifer J. Loros, Jay C. Dunlap Jan 1991

Neurospora Crassa Clock-Controlled Genes Are Regulated At The Level Of Transcription., Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

Although an extensive number of biological processes are under the daily control of the circadian biological clock, little is known about how the clock maintains its regulatory networks within a cell. An important aspect of this temporal control is the daily control of gene expression. Previously we identified two morning-specific genes that are regulated by the clock through daily control of gene expression (J. Loros, S. Denome, and J.C. Dunlap, Science 243:385-388, 1989). We have now introduced a method for transcriptional analysis in Neurospora crassa and used this nuclear run-on procedure to show that regulation of mRNA abundance for these …