Open Access. Powered by Scholars. Published by Universities.®

Genetic Structures Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Genetic Structures

Regulation Of Biofilm Formation Of Pseudomonas Aeruginosa, Nathaniel Edwards Head Jan 2006

Regulation Of Biofilm Formation Of Pseudomonas Aeruginosa, Nathaniel Edwards Head

Theses, Dissertations and Capstones

Cystic fibrosis (CF) is the most common, autosomal recessive lethal genetic disease in the Caucasian population, resulting from a malfunctioned cystic fibrosis transmembrane conductance regulator (CFTR) and leading to bacterial lung infections. P. aeruginosa, an opportunistic pathogen, establishes a chronic infection in CF with a phenotype of overproduction of an exopolysaccharide (alginate) due to host-directed mutagenesis. While free-floating planktonic bacteria can be properly cleared from the CF lung, P. aeruginosa, along with alginate production, establishes an infection in the form of a biofilm which supports its survival in nature and in vivo. As a result, genomic structure, …


Linking Ligand-Induced Alterations In Androgen Receptor Structure To Differential Gene Expression: A First Step In The Rational Design Of Selective Androgen Receptor Modulators, Dmitri Kazmin, Tatiana Prytkova, C. Edgar Cook, Russell Wolfinger, Tzu-Ming Chu, David Beratan, J. D. Norris, Ching-Yi Chang, Donald P. Mcdonnell Jan 2006

Linking Ligand-Induced Alterations In Androgen Receptor Structure To Differential Gene Expression: A First Step In The Rational Design Of Selective Androgen Receptor Modulators, Dmitri Kazmin, Tatiana Prytkova, C. Edgar Cook, Russell Wolfinger, Tzu-Ming Chu, David Beratan, J. D. Norris, Ching-Yi Chang, Donald P. Mcdonnell

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We have previously identified a family of novel androgen receptor (AR) ligands that, upon binding, enable AR to adopt structures distinct from that observed in the presence of canonical agonists. In this report, we describe the use of these compounds to establish a relationship between AR structure and biological activity with a view to defining a rational approach with which to identify useful selective AR modulators. To this end, we used combinatorial peptide phage display coupled with molecular dynamic structure analysis to identify the surfaces on AR that are exposed specifically in the presence of selected AR ligands. Subsequently, we …