Open Access. Powered by Scholars. Published by Universities.®

Lipids Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 32

Full-Text Articles in Lipids

Nanodiscs: A Novel Approach To The Study Of The Methionine Abc Transporter System, Michael T. Winslow Aug 2023

Nanodiscs: A Novel Approach To The Study Of The Methionine Abc Transporter System, Michael T. Winslow

Master's Theses

Membrane transporter proteins play the vital role of moving compounds in and out of the cell and are essential for all living organisms. ATP Binding Cassette (ABC) family transporters function both as importers and exporters in prokaryotes. MetNI is an E. coli Type I ABC transporter responsible for the uptake of methionine into the cytosol from the cell periplasmic space through the cell membrane to maintain intracellular methionine pools. ABC transporters, like other membrane proteins, are most often mechanistically and structurally studied in vitro, solubilized by detergents. However, detergent micelles may affect the conformational changes of membrane proteins relative to …


Observing Ceramide Pathway With Ferroptosis Via Mia Paca-2 Cell Treatment With Rsl3, Tazrin Rahman Jan 2023

Observing Ceramide Pathway With Ferroptosis Via Mia Paca-2 Cell Treatment With Rsl3, Tazrin Rahman

Auctus: The Journal of Undergraduate Research and Creative Scholarship

Composed of sphingosine and a fatty acid, ceramides are lipid molecules that serve as key metabolic signaling molecules of a sphingolipid pathway. While it acts as a precursor of complex sphingolipids, inducing ceramide generation can cause cell stress leading to subsequent cell death via apoptosis, necrosis, and even mitophagy. With regards to cell death specifically, a novel form of regulated cell death, ferroptosis, has recently been recognized of necrotic nature. Its unique morphological features and distinct properties have been observed over the last several decades; however, the molecular features were not identifiable as pure evidence of cell death, until recently …


Flippase Inhibitors As Antimicrobial Agents, Robert Tancer May 2022

Flippase Inhibitors As Antimicrobial Agents, Robert Tancer

Seton Hall University Dissertations and Theses (ETDs)

Drug resistant microbes are a considerable challenge for modern medicine to overcome. The research described in this dissertation involved development of lipid flippase inhibitors and investigating their potential as antimicrobial agents against various drug resistant microbes. The microbes primarily investigated were methicillin resistant Staphylococcus aureus (MRSA) & Cryptococcus neoformans. Chapter 1 reviews the historical perspective and summarizes the current state of the field of research. In Chapter 2, the design space of an antimicrobial peptide known as humimycin was explored and the effects of modifications on its structure were observed against MRSA. Several key observations resulted. Most notably, the …


Role Of Meibum And Tear Phospholipids In The Evaporative Water Loss Associated With Dry Eye., Samiyyah M. Sledge Dec 2021

Role Of Meibum And Tear Phospholipids In The Evaporative Water Loss Associated With Dry Eye., Samiyyah M. Sledge

Electronic Theses and Dissertations

It is generally believed that the tear film lipid surface film inhibits the rate of evaporation (Revap) of the underlying tear aqueous. It is also generally believed that changes in the composition of the tear film lipid layer is responsible for an increase in Revap in patients with dry eye. Both of these ideas have never been proven. The purpose of the current studies was to test these ideas. Revap was measured in vitro gravimetrically. Lipid spreading was measured using Raman spectroscopy and microscopy. The influence of the following surface films on the Revap of the sub phase of physiologically …


Exogenous Surfactant As A Delivery Vehicle For Intrapulmonary Therapeutics, Brandon J. Baer Oct 2021

Exogenous Surfactant As A Delivery Vehicle For Intrapulmonary Therapeutics, Brandon J. Baer

Electronic Thesis and Dissertation Repository

As an organ system, the lung has unique advantages and disadvantages for direct drug delivery. Its contact with the external environment allows for the airways to be easily accessible to intrapulmonary delivery. However, its complex structure, which divides into more narrow airways with each branch, can make direct delivery to the remote alveoli challenging. The objective of this thesis was to overcome this issue by using exogenous surfactant, a lipoprotein complex used to treat neonatal respiratory distress syndrome, as a carrier for pulmonary therapeutics. It was hypothesized that therapeutics administered with a surfactant vehicle would display enhanced delivery to the …


The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber Sep 2021

The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber

Dissertations, Theses, and Capstone Projects

Light provides organisms with energy and spatiotemporal information. To survive and adapt, organisms have developed the ability to sense light to drive biochemical effects that underlie vision, entrainment of circadian rhythm, stress response, virulence, and many other important molecularly driven responses. Blue-light sensing Light-Oxygen-Voltage (LOV) domains are ubiquitous across multiple kingdoms of life and modulate various physiological events via diverse effector domains. Using a small molecule flavin chromophore, the LOV domain undergoes light-dependent structural changes leading to activation or repression of these catalytic and non-catalytic effectors. In silico analyses of high-throughput genomic sequencing data has led to the marked expansion …


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang Sep 2021

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


Anatomy And Physiology Preparatory Course Textbook (2nd Edition), Carlos Liachovitzky Aug 2021

Anatomy And Physiology Preparatory Course Textbook (2nd Edition), Carlos Liachovitzky

Open Educational Resources

The goal of this preparatory textbook is to give students a chance to become familiar with some terms and some basic concepts they will find later on in the Anatomy and Physiology course, especially during the first few weeks of the course.

Organization and functioning of the human organism are generally presented starting from the simplest building blocks, and then moving into levels of increasing complexity. This textbook follows the same presentation. It begins introducing the concept of homeostasis, then covers the chemical level, and later on a basic introduction to cellular level, organ level, and organ system level. This …


Complexation Of Glycoalkaloid Α- Tomatine With Sterols And Its Potential Application As An Anti-Cancer Drug, Bishal Nepal Jul 2021

Complexation Of Glycoalkaloid Α- Tomatine With Sterols And Its Potential Application As An Anti-Cancer Drug, Bishal Nepal

Dissertations

Glycoalkaloids (GAs) are secondary metabolites found mostly in higher plant species and some marine invertebrates. They are known to form complexes with 3β-hydroxy sterols such as cholesterol causing membrane disruption. So far the visual evidence showcasing the complexes formed between glycoalkaloids and sterols has been mainly restricted to some earlier studies using Brewster angle microscopy. This study aimed to develop a method for topographic and morphological analysis of sterol-glycoalkaloid complexes. Langmuir-Blodgett (LB) transfer of monolayers comprising of glycoalkaloid tomatine, sterols, and lipids in varying molar ratios onto mica followed by AFM examination was performed. The AFM method used required minimal …


Lipoprotein-Induced Increases In Cholesterol And 7-Ketocholesterol Result In Opposite Molecular-Scale Biophysical Effects On Membrane Structure, Manuela A.A. Ayee, Irena Levitan Jul 2021

Lipoprotein-Induced Increases In Cholesterol And 7-Ketocholesterol Result In Opposite Molecular-Scale Biophysical Effects On Membrane Structure, Manuela A.A. Ayee, Irena Levitan

Faculty Work Comprehensive List

Under hypercholesterolemic conditions, exposure of cells to lipoproteins results in a subtle membrane increase in the levels of cholesterol and 7-ketocholesterol, as compared to normal conditions. The effect of these physiologically relevant concentration increases on multicomponent bilayer membranes was investigated using coarse-grained molecular dynamics simulations. Significant changes in the structural and dynamic properties of the bilayer membranes resulted from these subtle increases in sterol levels, with both sterol species inducing decreases in the lateral area and inhibiting lateral diffusion to varying extents. Cholesterol and 7-ketocholesterol, however, exhibited opposite effects on lipid packing and orientation. The results from this study indicate …


Finding The Balance​ The Effects Of Α-Cyclodextrin, 2-Hydroxypropyl-Β-Cyclodextrin, And Cholesterol Bacteroides Vulgatus And Clostridium Bolteae​, Bethany Weaver May 2021

Finding The Balance​ The Effects Of Α-Cyclodextrin, 2-Hydroxypropyl-Β-Cyclodextrin, And Cholesterol Bacteroides Vulgatus And Clostridium Bolteae​, Bethany Weaver

Honors Program Projects

Atherosclerosis is a cardiovascular disease that is characterized by the hardening of arteries through the formation of cholesterol plaques. Cyclodextrins could potentially treat atherosclerosis by shrinking plaques. These cyclic oligosaccharides can make complexes with cholesterol but have also shown toxic side effects. This study looked for potential negative effects of cyclodextrins and cholesterol on gut bacteria. It was hypothesized that Bacteroides vulgatus will have decreased growth when grown in broth with cholesterol. In contrast, Clostridium bolteae will have decreased growth when grown in broth with cyclodextrins. Due to the fact that these bacteria are anaerobic, Clostridium bolteae and Bacteroides vulgatus, …


Experimental And Computational Observations Of Immunogenic Cobalt Porphyrin Lipid Bilayers: Nanodomain-Enhanced Antigen Association., Jasmin Federizon, Conrard Giresse Tetsassi Feugmo, Wei-Chiao Huang, Xuedan He, Kazutoyo Miura, Aida Razi, Joaquin Ortega, Mikko Karttunen, Jonathan F Lovell Jan 2021

Experimental And Computational Observations Of Immunogenic Cobalt Porphyrin Lipid Bilayers: Nanodomain-Enhanced Antigen Association., Jasmin Federizon, Conrard Giresse Tetsassi Feugmo, Wei-Chiao Huang, Xuedan He, Kazutoyo Miura, Aida Razi, Joaquin Ortega, Mikko Karttunen, Jonathan F Lovell

Chemistry Publications

Cobalt porphyrin phospholipid (CoPoP) can incorporate within bilayers to enable non-covalent surface-display of antigens on liposomes by mixing with proteins bearing a polyhistidine tag (his-tag); however, the mechanisms for how this occurs are poorly understood. These were investigated using the his-tagged model antigen Pfs25, a protein antigen candidate for malaria transmission-blocking vaccines. Pfs25 was found to associate with the small molecule aquocobalamin, a form of vitamin B12 and a cobalt-containing corrin macrocycle, but without particle formation, enabling comparative assessment. Relative to CoPoP liposomes, binding and serum stability studies indicated a weaker association of Pfs25 to aquocobalamin or cobalt nitrilotriacetic acid …


Finding The Balance​ The Effects Of Α-Cyclodextrin, 2-Hydroxypropyl-Β-Cyclodextrin, And Cholesterol Bacteroides Vulgatus And Clostridium Bolteae​, Bethany Weaver Dec 2020

Finding The Balance​ The Effects Of Α-Cyclodextrin, 2-Hydroxypropyl-Β-Cyclodextrin, And Cholesterol Bacteroides Vulgatus And Clostridium Bolteae​, Bethany Weaver

Pence-Boyce STEM Student Scholarship

Atherosclerosis is a cardiovascular disease that is characterized by the hardening of arteries through the formation of cholesterol plaques. Cyclodextrins could potentially treat atherosclerosis by shrinking plaques. These cyclic oligosaccharides can make complexes with cholesterol but have also shown toxic side effects. This study looked for potential negative effects of cyclodextrins and cholesterol on gut bacteria. It was hypothesized that Bacteroides vulgatus will have decreased growth when grown in broth with cholesterol. In contrast, Clostridium bolteae will have decreased growth when grown in broth with cyclodextrins. Due to the fact that these bacteria are anaerobic, Clostridium bolteae and Bacteroides vulgatus …


Single‐Molecule 3d Orientation Imaging Reveals Nanoscale Compositional Heterogeneity In Lipid Membranes, Jin Lu, Hesam Mazidi, Tianben Ding, Oumeng Zhang, Matthew D. Lew Sep 2020

Single‐Molecule 3d Orientation Imaging Reveals Nanoscale Compositional Heterogeneity In Lipid Membranes, Jin Lu, Hesam Mazidi, Tianben Ding, Oumeng Zhang, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

In soft matter, thermal energy causes molecules to continuously translate and rotate, even in crowded environments, thereby impacting the spatial organization and function of most molecular assemblies, such as lipid membranes. Directly measuring the orientation and spatial organization of large collections (>3000 molecules μm−2) of single molecules with nanoscale resolution remains elusive. In this paper, we utilize SMOLM, single‐molecule orientation localization microscopy, to directly measure the orientation spectra (3D orientation plus “wobble”) of lipophilic probes transiently bound to lipid membranes, revealing that Nile red's (NR) orientation spectra are extremely sensitive to membrane chemical composition. SMOLM images resolve …


The Impact Of Aging And Mechanical Injury On Alveolar Epithelial And Macrophage Responses In Acute Lung Injury And Inflammation, Michael S. Valentine Jan 2020

The Impact Of Aging And Mechanical Injury On Alveolar Epithelial And Macrophage Responses In Acute Lung Injury And Inflammation, Michael S. Valentine

Theses and Dissertations

Patients with severe lung pathologies, such as Acute Respiratory Distress Syndrome (ARDS), often require mechanical ventilation as a clinical intervention; however, this procedure frequently exacerbates the original pulmonary issue and produces an exaggerated inflammatory response that potentially leads to sepsis, multisystem organ failure, and mortality. This acute lung injury (ALI) condition has been termed Ventilator-Induced Lung Injury (VILI). Alveolar overdistension, cyclic atelectasis, and biotrauma are the primary injury mechanisms in VILI that lead to the loss of alveolar barrier integrity and pulmonary inflammation. Stress and strains during mechanical ventilation are believed to initiate alveolar epithelial mechanotransduction signaling mechanisms that contribute …


Influence Of Single And Multiple Histidine Residues And Their Ionization Properties On Transmembrane Helix Dynamics, Orientations And Fraying, Fahmida Afrose Dec 2019

Influence Of Single And Multiple Histidine Residues And Their Ionization Properties On Transmembrane Helix Dynamics, Orientations And Fraying, Fahmida Afrose

Graduate Theses and Dissertations

Since aromatic and charged residues are often present in various locations of transmembrane helices of integral membrane proteins, their impacts on the molecular properties of transmembrane proteins and their interactions with lipids are of particular interest in many studies. In this work, I used solid-state deuterium NMR spectroscopy in designed model peptide GWALP23 [GGALW(LA)6LWLAGA] with selective deuterium labels to addresses the pH dependence and influence of single and multiple “guest” histidine residues in the orientation and dynamic behaviors of transmembrane proteins. The mutations include Gly to His (G2/22 to H2/22), Trp to His (W5/19 to H5/19) and Leu to His …


Arachidin 3 Modulation Of Lipid Metabolism In Rotavirus Infections, Stormey Wisdom Jun 2019

Arachidin 3 Modulation Of Lipid Metabolism In Rotavirus Infections, Stormey Wisdom

Electronic Theses and Dissertations

Rotavirus (RV) can cause severe and deadly gastroenteritis in young children, infants, and immunocompromised individuals. Previous studies have shown that arachidin 3 (A3) inhibits RV replication, and that RV replication is dependent on the presence of lipids. This study investigated the alteration of lipid metabolism by A3 in RV infected HT29.f8 cells. A decrease in the RV regulation of lipid biosynthesis genes was observed with the addition of A3 using qRT-PCR. Also, immunofluorescent and histochemical staining for neutral fats, a major component of cellular lipid droplets, revealed an increased accumulation with both RV and RV+A3 when compared to no virus …


Abcg5 And Abcg8: More Than A Defense Against Xenosterols, Shailendra B. Patel, Gregory A. Graf, Ryan E. Temel May 2018

Abcg5 And Abcg8: More Than A Defense Against Xenosterols, Shailendra B. Patel, Gregory A. Graf, Ryan E. Temel

Pharmaceutical Sciences Faculty Publications

The elucidation of the molecular basis of the rare disease, sitosterolemia, has revolutionized our mechanistic understanding of how dietary sterols are excreted and how cholesterol is eliminated from the body. Two proteins, ABCG5 and ABCG8, encoded by the sitosterolemia locus, work as obligate dimers to pump sterols out of hepatocytes and enterocytes. ABCG5/ABCG8 are key in regulating whole-body sterol trafficking, by eliminating sterols via the biliary tree as well as the intestinal tract. Importantly, these transporters keep xenosterols from accumulating in the body. The sitosterolemia locus has been genetically associated with lipid levels and downstream atherosclerotic disease, as well as …


Increased Liver Tumor Formation In Neutral Sphingomyelinase-2-Deficient Mice, Liansheng Zhong, Ji Na Kong, Michael B. Dinkins, Silvia Leanhart, Zhihui Zhu, Stefka D. Spassieva, Haiyan Qin, Hsuan-Pei Lin, Ahmed Elsherbini, Rebecca Wang, Xue Jiang, Mariana N. Nikolova‑Karakashian, Guanghu Wang, Erhard Bieberich Mar 2018

Increased Liver Tumor Formation In Neutral Sphingomyelinase-2-Deficient Mice, Liansheng Zhong, Ji Na Kong, Michael B. Dinkins, Silvia Leanhart, Zhihui Zhu, Stefka D. Spassieva, Haiyan Qin, Hsuan-Pei Lin, Ahmed Elsherbini, Rebecca Wang, Xue Jiang, Mariana N. Nikolova‑Karakashian, Guanghu Wang, Erhard Bieberich

Physiology Faculty Publications

Sphingolipids are key signaling lipids in cancer. Genome-wide studies have identified neutral SMase-2 (nSMase2), an enzyme generating ceramide from SM, as a potential repressor for hepatocellular carcinoma. However, little is known about the sphingolipids regulated by nSMase2 and their roles in liver tumor development. We discovered growth of spontaneous liver tumors in 27.3% (9 of 33) of aged male nSMase2-deficient (fro/fro) mice. Lipidomics analysis showed a marked increase of SM in the tumor. Unexpectedly, tumor tissues presented with more than a 7-fold increase of C16-ceramide, concurrent with upregulation of ceramide synthase 5. The fro/fro liver tumor, …


Dynamic Cycling Of T-Snare Acylation Regulates Platelet Exocytosis, Jinchao Zhang, Yunjie Huang, Jing Chen, Haining Zhu, Sidney W. Whiteheart Jan 2018

Dynamic Cycling Of T-Snare Acylation Regulates Platelet Exocytosis, Jinchao Zhang, Yunjie Huang, Jing Chen, Haining Zhu, Sidney W. Whiteheart

Molecular and Cellular Biochemistry Faculty Publications

Platelets regulate vascular integrity by secreting a host of molecules that promote hemostasis and its sequelae. Given the importance of platelet exocytosis, it is critical to understand how it is controlled. The t-SNAREs, SNAP-23 and syntaxin-11, lack classical transmembrane domains (TMDs), yet both are associated with platelet membranes and redistributed into cholesterol-dependent lipid rafts when platelets are activated. Using metabolic labeling and hydroxylamine (HA)/HCl treatment, we showed that both contain thioester-linked acyl groups. Mass spectrometry mapping further showed that syntaxin-11 was modified on cysteine 275, 279, 280, 282, 283, and 285, and SNAP-23 was modified on cysteine 79, 80, 83, …


Novel Function Of Ceramide For Regulation Of Mitochondrial Atp Release In Astrocytes, Ji-Na Kong, Zhihui Zhu, Yutaka Itokazu, Guanghu Wang, Michael B. Dinkins, Liansheng Zhong, Hsuan-Pei Lin, Ahmed Elsherbini, Silvia Leanhart, Xue Jiang, Haiyan Qin, Wenbo Zhi, Stefka D. Spassieva, Erhard Bieberich Jan 2018

Novel Function Of Ceramide For Regulation Of Mitochondrial Atp Release In Astrocytes, Ji-Na Kong, Zhihui Zhu, Yutaka Itokazu, Guanghu Wang, Michael B. Dinkins, Liansheng Zhong, Hsuan-Pei Lin, Ahmed Elsherbini, Silvia Leanhart, Xue Jiang, Haiyan Qin, Wenbo Zhi, Stefka D. Spassieva, Erhard Bieberich

Physiology Faculty Publications

We reported that amyloid β peptide (Aβ42) activated neutral SMase 2 (nSMase2), thereby increasing the concentration of the sphingolipid ceramide in astrocytes. Here, we show that Aβ42 induced mitochondrial fragmentation in wild-type astrocytes, but not in nSMase2-deficient cells or astrocytes treated with fumonisin B1 (FB1), an inhibitor of ceramide synthases. Unexpectedly, ceramide depletion was concurrent with rapid movements of mitochondria, indicating an unknown function of ceramide for mitochondria. Using immunocytochemistry and super-resolution microscopy, we detected ceramide-enriched and mitochondria-associated membranes (CEMAMs) that were codistributed with microtubules. Interaction of ceramide with tubulin was confirmed by cross-linking to N-[9-(3-pent-4-ynyl-3-H-diazirine-3-yl)-nonanoyl]-D-erythro-sphingosine …


Diversity Oriented Synthesis, Characterization And Anti-Cancer Activity Of Killer Peptide Nucleolipid Bioconjugates, Niki K. Rana May 2017

Diversity Oriented Synthesis, Characterization And Anti-Cancer Activity Of Killer Peptide Nucleolipid Bioconjugates, Niki K. Rana

Seton Hall University Dissertations and Theses (ETDs)

The killer peptide sequence D-(KLAKLAK)2 has been originally designed and developed as an antibacterial agent. Despite having excellent cytotoxicity towards bacteria, this sequence maintains low cell cytotoxity in malignant mammalian cell types such as cancer. The chemical basis for its selectivity has been attributed to its poly(cationic) amphiphilic nature, which facilitates cell permeability across the negatively charged bacterial membrane, but with limited permeability across the zwitterionic membrane of mammalian cells. The positively charged D-(KLAKLAK)2 sequence has been found to accumulate on the surface of the mitochondria causing dissipation of the negatively charged mitochondrial membrane potential. This charge disruption …


Role Of Inflammation In 20-Hete Regulation Of Ischemia-Induced Angiogenesis, Elizabeth Berry, Rachel John, Samantha Tang, Austin M. Guo Mar 2017

Role Of Inflammation In 20-Hete Regulation Of Ischemia-Induced Angiogenesis, Elizabeth Berry, Rachel John, Samantha Tang, Austin M. Guo

NYMC Faculty Posters

Objective: 20-Hydroxyeicosatetraenoic acid (20-HETE), an important bioactive lipid metabolite, has recently been identified to be a novel contributor of angiogenesis secondary to ischemia. Moreover, an inflammatory response is required for the initiation of ischemic angiogenesis, in response to ischemic tissue injury. The goal of this study is to investigate the role of inflammation in 20-HETE regulation of ischemia-induced angiogenesis.

Methods: We first established a mouse hind limb ischemia model for immunocompetent Balb/C mice and immunodeficient NOD-SCID mice by femoral artery ligation. Groups of Balb/C and NOD-SCID mice were administered a 20-HETE synthesis inhibitor, DDMS, or saline as a solvent control. …


Role Of Flippases In Protein Glycosylation In The Endoplasmic Reticulum, Jeffrey S. Rush Feb 2016

Role Of Flippases In Protein Glycosylation In The Endoplasmic Reticulum, Jeffrey S. Rush

Molecular and Cellular Biochemistry Faculty Publications

Glycosylation is essential to the synthesis, folding, and function of glycoproteins in eukaryotes. Proteins are co- and posttranslationally modified by a variety of glycans in the endoplasmic reticulum (ER); modifications include C- and O-mannosylation, N-glycosylation, and the addition of glycosylphosphatidylinositol membrane anchors. Protein glycosylation in the ER of eukaryotes involves enzymatic steps on both the cytosolic and lumenal surfaces of the ER membrane. The glycans are first assembled as precursor glycolipids, on the cytosolic surface of the ER, which are tethered to the membrane by attachment to a long-chain polyisoprenyl phosphate (dolichol) containing a reduced α-isoprene. The lipid-anchored building blocks …


Human Anatomy And Physiology Preparatory Course (1st Edition), Carlos Liachovitzky Jan 2015

Human Anatomy And Physiology Preparatory Course (1st Edition), Carlos Liachovitzky

Open Educational Resources

The overall purpose of this preparatory course textbook is to help students familiarize with some terms and some basic concepts they will find later in the Human Anatomy and Physiology I course.

The organization and functioning of the human organism generally is discussed in terms of different levels of increasing complexity, from the smallest building blocks to the entire body. This Anatomy and Physiology preparatory course covers the foundations on the chemical level, and a basic introduction to cellular level, organ level, and organ system levels. There is also an introduction to homeostasis at the beginning.


The Effect Of Docosahexaenoic Acid (Dha)-Containing Phosphatidylcholine (Pc) On Liquid-Ordered And Liquid-Disordered Coexistence, Yongwen Gu Aug 2014

The Effect Of Docosahexaenoic Acid (Dha)-Containing Phosphatidylcholine (Pc) On Liquid-Ordered And Liquid-Disordered Coexistence, Yongwen Gu

Dissertations and Theses

Plasma membranes are essential to both the structure and function of mammalian cells. The first unifying paradigm of membrane structure, the Fluid Mosaic Model, is no longer considered adequate to describe the many non-homogeneous lipid structures that have been observed in both natural and model membranes over the past approximately thirty years. The field of membrane biophysics now appreciates that the complex mixture of different lipid species found in natural membranes produces a range of dynamic, laterally segregated, non-homogeneous structures which exist on time scales ranging from microseconds to minutes.

When sphingomyelin (SM), POPC and cholesterol are all present in …


Increased Geranylgeranylated K-Ras Contributes To Antineoplastic Effects Of Farnesyltransferase Inhibitors., Mandy A. Hall May 2012

Increased Geranylgeranylated K-Ras Contributes To Antineoplastic Effects Of Farnesyltransferase Inhibitors., Mandy A. Hall

Dissertations & Theses (Open Access)

The Ras family of small GTPases (N-, H-, and K-Ras) is a group of important signaling mediators. Ras is frequently activated in some cancers, while others maintain low level activity to achieve optimal cell growth. In cells with endogenously low levels of active Ras, increasing Ras signaling through the ERK and p38 MAPK pathways can cause growth arrest or cell death. Ras requires prenylation – the addition of a 15-carbon (farnesyl) or 20-carbon (geranylgeranyl) group – to keep the protein anchored into membranes for effective signaling. N- and K-Ras can be alternatively geranylgeranylated (GG’d) if farnesylation is inhibited but are …


Lipopolysaccharide Biosynthesis Without The Lipids: Substrate Recognition For Escherichia Coli Heptosyltransferasei, Daniel J. Czyzyk, Cassie Liu, Erika A. Taylor Nov 2011

Lipopolysaccharide Biosynthesis Without The Lipids: Substrate Recognition For Escherichia Coli Heptosyltransferasei, Daniel J. Czyzyk, Cassie Liu, Erika A. Taylor

Erika A. Taylor, Ph.D.

Heptosyltransferase I (HepI) is responsible for the transfer of l-glycero-d-manno-heptose to a 3-deoxy-α-D-oct-2-ulopyranosonic acid (Kdo) of the growing core region of lipopolysaccharide (LPS). The catalytic efficiency of HepI with the fully deacylated analogue of Escherichia coli HepI LipidA is 12-fold greater than with the fully acylated substrate, with a k(cat)/K(m) of 2.7 × 10(6) M(-1) s(-1), compared to a value of 2.2 × 10(5) M(-1) s(-1) for the Kdo(2)-LipidA substrate. Not only is this is the first demonstration that an LPS biosynthetic enzyme is catalytically enhanced by the absence of lipids, this result has significant implications for downstream enzymes that …


Chemical Tools To Characterize Membrane-Protein Binding Interactions Using Synthetic Lipid Probes, Meng Meng Rowland May 2011

Chemical Tools To Characterize Membrane-Protein Binding Interactions Using Synthetic Lipid Probes, Meng Meng Rowland

Doctoral Dissertations

Signaling lipids such as diacylglycerol (DAG) and the phosphatidylinositol polyphosphates (PIPns) play crucial roles in numerous cellular pathways. However, characterization of their activities is hindered by the complexity of associated signaling pathways and of the membrane environment. To address this issue, we have developed lipid probes that are effective for characterizing biological events using different applications, including activity-based probing (PIPns and DAG) and microarray analysis (PIPns). The activity-based probes have been applied to label receptor targets in multiple cancer cell proteomes through photocrosslinking followed by click reactions. The probes were found to label several …


A Method For The Comparison Of Hdl Containing Apoprotein E And Hdl Cholesterol, Steven A. Knizner Apr 1984

A Method For The Comparison Of Hdl Containing Apoprotein E And Hdl Cholesterol, Steven A. Knizner

Chemistry & Biochemistry Theses & Dissertations

Human serum high density lipoproteins (HDL) were isolated by preparative salt density gradient ultracentrifugation and analyzed further by heparin-sepharose affinity chromatography. Separation of the major classes of serum lipoproteins was achieved after a single ultracentrifugation on a salt density gradient at 272,000 x g for 36 hours in a swinging bucket rotor. After isolation, the total HDL was subdivided into HDL containing apoprotein E and HDL without this apoprotein by heparin-sepharose affinity chromatography. Relative amounts of these subclasses were then calculated.

HDL-cholesterol was measured after precipitation of LDL and VLDL by phosphotungstic acid and magnesium. The statistical relationship between HDL …