Open Access. Powered by Scholars. Published by Universities.®

Enzymes and Coenzymes Commons

Open Access. Powered by Scholars. Published by Universities.®

Pharmacology, Toxicology and Environmental Health

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 11 of 11

Full-Text Articles in Enzymes and Coenzymes

Leveraging Bio-Inspired Molecules For Cancer Theranostics, Douglas S. Macpherson Feb 2023

Leveraging Bio-Inspired Molecules For Cancer Theranostics, Douglas S. Macpherson

Dissertations, Theses, and Capstone Projects

A variety of molecules can be radiolabeled and delivered to a cancer site for the purposes of diagnostics and therapy. Among the most promising of tumor targeting molecules are peptides and antibodies. These bio-inspired molecules can be designed and synthesized to target and respond to cancer cells based on the properties of those cells. Matrix metalloproteinase (MMP) enzymes are over-expressed by some metastatic cancers, in which they are responsible for the degradation and remodeling of the extracellular matrix. In recent years, MMPs have emerged as promising targets for enzyme-responsive diagnostic probes because oligopeptides can be designed to be selectively hydrolyzed …


Biowill - Characterising Willow Bark Bio-Actives For Skin Therapies, Arnold Marisa Jun 2022

Biowill - Characterising Willow Bark Bio-Actives For Skin Therapies, Arnold Marisa

ORBioM (Open Research BioSciences Meeting)

Willow bark is considered as a disposable by-product when processing willow for biomass. Willow (Salix) is known to contain high value bioactive compounds which include salicin and its derivatives, and other phytochemicals of interest such as polyphenols and flavonoids. The plant is historically known as the primary source of salicylates to which the well-known drug aspirin is derived from. The work forms part of the Interreg project BioWILL, which is focused on integrated “Zero Waste” biorefinery utilising all fractions of willow feedstock for the production of biochemicals and renewable energy. This project aims to investigate the crude and …


Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber Jan 2019

Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber

Theses and Dissertations--Pharmacy

Methyl group transfer from S-adenosyl-l-methionine (AdoMet) to various substrates including DNA, proteins, and natural products (NPs), is accomplished by methyltransferases (MTs). Analogs of AdoMet, bearing an alternative S-alkyl group can be exploited, in the context of an array of wild-type MT-catalyzed reactions, to differentially alkylate DNA, proteins, and NPs. This technology provides a means to elucidate MT targets by the MT-mediated installation of chemoselective handles from AdoMet analogs to biologically relevant molecules and affords researchers a fresh route to diversify NP scaffolds by permitting the differential alkylation of chemical sites vulnerable to NP MTs that are unreactive to …


Direct Quantification Of Deubiquitinating Enzyme Activity In Single Intact Cells, Nora Safabakhsh Aug 2018

Direct Quantification Of Deubiquitinating Enzyme Activity In Single Intact Cells, Nora Safabakhsh

LSU Doctoral Dissertations

Challenges in drug efficacy occur during the treatment of most types of cancer due to the heterogeneity of the tumor microenvironment. This has led to the development of personalized medicine. Due to the clinical success of the proteasome inhibitors Bortezomib and Carfilzomib in treatment of multiple myeloma, interest has shifted towards molecularly-targeted chemotherapeutics for ubiquitin-proteasome system (UPS). Deubiquitinating enzymes (DUBs) are an essential part of this pathway which have been found to promote Bortezomib resistance in multiple myeloma patients. Unfortunately, there is a lack of specific, high throughput biochemical assays to characterize DUB activity in patient samples before and after …


Anti-Tumor Activity Of Phenoxybenzamine And Its Inhibition Of Histone Deacetylases, Mario A. Inchiosa Jun 2018

Anti-Tumor Activity Of Phenoxybenzamine And Its Inhibition Of Histone Deacetylases, Mario A. Inchiosa

NYMC Faculty Publications

The principal finding from this study was the recognition that the α-adrenergic antagonist, phenoxybenzamine, possesses histone deacetylase inhibitory activity. Phenoxybenzamine is approved by the United States Food and Drug Administration for the treatment of hypertensive crises associated with tumors of the adrenal medulla, pheochromocytomas. It has several "off label" indications relative to its capacity to relax vascular smooth muscle and smooth muscle of the urogenital tract. The drug also has a long history of apparent efficacy in ameliorating, and perhaps reversing, the severe symptoms of neuropathic pain syndromes. Our interest in this feature of the drug relates to the fact …


Epigenetic Instability Induced By Dna Base Lesion Via Dna Base Excision Repair, Zhongliang Jiang Sep 2017

Epigenetic Instability Induced By Dna Base Lesion Via Dna Base Excision Repair, Zhongliang Jiang

FIU Electronic Theses and Dissertations

DNA damage can cause genome instability, which may lead to human cancer. The most common form of DNA damage is DNA base damage, which is efficiently repaired by DNA base excision repair (BER). Thus BER is the major DNA repair pathway that maintains the stability of the genome. On the other hand, BER mediates DNA demethylation that can occur on the promoter region of important tumor suppressor genes such as Breast Cancer 1 (BRCA1) gene that is also involved in prevention and development of cancer. In this study, employing cell-based and in vitro biochemical approaches along with bisulfite DNA sequencing, …


The Degradation Of Pharmaceutical Pollutants In Wastewater Catalyzed By Chloroperoxidase And The Construction Of Chloroperoxidase H105r Mutant, Qinghao He Jun 2016

The Degradation Of Pharmaceutical Pollutants In Wastewater Catalyzed By Chloroperoxidase And The Construction Of Chloroperoxidase H105r Mutant, Qinghao He

FIU Electronic Theses and Dissertations

Trace amounts of pharmaceuticals have been detected in water, from nanograms per liter to micrograms per liter, and have a negatively effect in the aquatic environment and an increased potential risk of drug poisoning for human and animals. In order to address the problem, drug degradation catalyzed by chloroperoxidase (CPO) has been investigated. CPO is a heme-containing glycoprotein secreted by the fungus, Caldariomyces fumago, it catalyzes two major types of oxidations, two one-electron oxidations as catalyzed by most peroxidases and two-electron oxidations which are rare for conventional peroxidases.

Five common drugs from a variety of classes which were persistent in …


Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd Dec 2015

Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd

Dissertations & Theses (Open Access)

Normal Glycolytic Enzyme Activity is Critical for Hypoxia Inducible Factor-1α Activity and Provides Novel Targets for Inhibiting Tumor Growth

By Geoffrey Grandjean

Advisory Professor: Garth Powis, D. Phil

Unique to proliferating cancer cells is the observation that their increased need for energy is provided by a high rate of glycolysis followed by lactic acid fermentation in a process known as the Warburg Effect, a process many times less efficient than oxidative phosphorylation employed by normal cells to satisfy a similar energy demand [1]. This high rate of glycolysis occurs regardless of the concentration of oxygen in the cell and …


Chemoenzymatic Studies To Enhance The Chemical Space Of Natural Products, Jhong-Min Chen Jan 2015

Chemoenzymatic Studies To Enhance The Chemical Space Of Natural Products, Jhong-Min Chen

Theses and Dissertations--Pharmacy

Natural products provide some of the most potent anticancer agents and offer a template for new drug design or improvement with the advantage of an enormous chemical space. The overall goal of this thesis research is to enhance the chemical space of two natural products in order to generate novel drugs with better in vivo bioactivities than the original natural products.

Polycarcin V (PV) is a gilvocarcin-type antitumor agent with similar structure and comparable bioactivity with the principle compound of this group, gilvocarcin V (GV). Modest modifications of the polyketide-derived tetracyclic core of GV had been accomplished, but the most …


Synthesis, Biochemical And Molecular Modelling Studies Of Antiproliferative Azetidinones Causing Microtubule Disruption And Mitotic Catastrophe, Niamh O'Boyle, Miriam Carr, Lisa M. Greene, Niall O. Keely, Andrew Js Knox, Thomas Mccabe, David G. Lloyd, Daniela M. Zisterer, Mary J. Meegan Jan 2011

Synthesis, Biochemical And Molecular Modelling Studies Of Antiproliferative Azetidinones Causing Microtubule Disruption And Mitotic Catastrophe, Niamh O'Boyle, Miriam Carr, Lisa M. Greene, Niall O. Keely, Andrew Js Knox, Thomas Mccabe, David G. Lloyd, Daniela M. Zisterer, Mary J. Meegan

Articles

The structure-activity relationships of antiproliferative β-lactams, focusing on modifications at the 4-position of the β-lactam ring, is described. Synthesis of this series of compounds was achieved utilizing the Staudinger and Reformatsky reactions. The antiproliferative activity was assessed in MCF-7 cells, where the 4-(4-ethoxy)phenyl substituted compound 26 displayed the most potent activity with an IC50 value of 0.22 μM. The mechanism of action was demonstrated to be by inhibition of tubulin. Cell exposure to combretastatin A-4 and 26 led to arrest of MCF-7 cells in the G2/M phase of the cell cycle and induction of apoptosis. Additionally, mitotic catastrophe for …


Determination Of Important Ligand Sites For The Interaction With Aminoglycoside Acetyltransferase(3)-Iiib By Nmr, Katherine Jane Woodruff Dec 2010

Determination Of Important Ligand Sites For The Interaction With Aminoglycoside Acetyltransferase(3)-Iiib By Nmr, Katherine Jane Woodruff

Chancellor’s Honors Program Projects

No abstract provided.