Open Access. Powered by Scholars. Published by Universities.®

Amino Acids, Peptides, and Proteins Commons

Open Access. Powered by Scholars. Published by Universities.®

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Discipline
Keyword
Publication Year

Articles 1 - 30 of 100

Full-Text Articles in Amino Acids, Peptides, and Proteins

Purification And Biochemical Characterization Of The Dna Binding Domain Of The Nitrogenase Transcriptional Activator Nifa From Gluconacetobacter Diazotrophicus, Heidi G. Standke, Lois Kim, Cedric P. Owens Oct 2023

Purification And Biochemical Characterization Of The Dna Binding Domain Of The Nitrogenase Transcriptional Activator Nifa From Gluconacetobacter Diazotrophicus, Heidi G. Standke, Lois Kim, Cedric P. Owens

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

NifA is a σ54 activator that turns on bacterial nitrogen fixation under reducing conditions and when fixed cellular nitrogen levels are low. The redox sensing mechanism in NifA is poorly understood. In α- and β-proteobacteria, redox sensing involves two pairs of Cys residues within and immediately following the protein’s central AAA+ domain. In this work, we examine if an additional Cys pair that is part of a C(X)5 C motif and located immediately upstream of the DNA binding domain of NifA from the α-proteobacterium Gluconacetobacter diazotrophicus (Gd) is involved in redox sensing. We hypothesize that the …


Α7 Nicotinic Acetylcholine Receptor Interaction With G Proteins In Breast Cancer Cell Proliferation, Motility, And Calcium Signaling, Murat Oz, Justin R. King, Keun-Hang Susan Yang, Sarah Khushaish, Yulia Tchugunova, Maitham A. Khajah, Yunus A. Luqmani, Nadine Kabbani Jul 2023

Α7 Nicotinic Acetylcholine Receptor Interaction With G Proteins In Breast Cancer Cell Proliferation, Motility, And Calcium Signaling, Murat Oz, Justin R. King, Keun-Hang Susan Yang, Sarah Khushaish, Yulia Tchugunova, Maitham A. Khajah, Yunus A. Luqmani, Nadine Kabbani

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Chronic smoking is a primary risk factor for breast cancer due to the presence of various toxins and carcinogens within tobacco products. Nicotine is the primary addictive component of tobacco products and has been shown to promote breast cancer cell proliferation and metastases. Nicotine activates nicotinic acetylcholine receptors (nAChRs) that are expressed in cancer cell lines. Here, we examine the role of the α7 nAChR in coupling to heterotrimeric G proteins within breast cancer MCF-7 cells. Pharmacological activation of the α7 nAChR using choline or nicotine was found to increase proliferation, motility, and calcium signaling in MCF-7 cells. This effect …


The Pros Of Changing Trna Identity, Michael Ibba Jun 2023

The Pros Of Changing Trna Identity, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The notion that errors in protein synthesis are universally harmful to the cell has been questioned by findings that suggest such mistakes may sometimes be beneficial. However, how often these beneficial mistakes arise from programmed changes in gene expression as opposed to reduced accuracy of the translation machinery is still unclear. A new study published in JBC shows that some bacteria have beneficially evolved the ability to mistranslate specific parts of the genetic code, a trait that allows improved antibiotic resistance.


Arginine Methylation Of The Pgc-1Α C‑Terminus Is Temperature- Dependent, Meryl Mendoz, Mariel Mendoza, Tiffany Lubrino, Sidney Briski, Immaculeta Osuji, Janielle Cuala, Brendan Ly, Ivan Ocegueda, Harvey Peralta, Benjamin A. Garcia, Cecilia Zurita-Lopez Dec 2022

Arginine Methylation Of The Pgc-1Α C‑Terminus Is Temperature- Dependent, Meryl Mendoz, Mariel Mendoza, Tiffany Lubrino, Sidney Briski, Immaculeta Osuji, Janielle Cuala, Brendan Ly, Ivan Ocegueda, Harvey Peralta, Benjamin A. Garcia, Cecilia Zurita-Lopez

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We set out to determine whether the C-terminus (amino acids 481–798) of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α, UniProt Q9UBK2), a regulatory metabolic protein involved in mitochondrial biogenesis, and respiration, is an arginine methyltransferase substrate. Arginine methylation by protein arginine methyltransferases (PRMTs) alters protein function and thus contributes to various cellular processes. In addition to confirming methylation of the C-terminus by PRMT1 as described in the literature, we have identified methylation by another member of the PRMT family, PRMT7. We performed in vitro methylation reactions using recombinant mammalian PRMT7 and PRMT1 at 37, 30, 21, 18, and 4 °C. …


Oxidative Stress Strongly Restricts The Effect Of Codon Choice On The Efficiency Of Protein Synthesis In Escherichia Coli, Lorenzo Eugenio Leiva, Sara Elgamal, Sebastian A. Leidel, Omar Orellana, Michael Ibba, Assaf Katz Nov 2022

Oxidative Stress Strongly Restricts The Effect Of Codon Choice On The Efficiency Of Protein Synthesis In Escherichia Coli, Lorenzo Eugenio Leiva, Sara Elgamal, Sebastian A. Leidel, Omar Orellana, Michael Ibba, Assaf Katz

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Introduction

The response of enterobacteria to oxidative stress is usually considered to be regulated by transcription factors such as OxyR and SoxR. Nevertheless, several reports have shown that under oxidative stress the levels, modification and aminoacylation of tRNAs may be altered suggesting a role of codon bias in regulation of gene expression under this condition.

Methods

In order to characterize the effects of oxidative stress on translation elongation we constructed a library of 61 plasmids, each coding for the green fluorescent protein (GFP) translationally fused to a different set of four identical codons.

Results

Using these reporters, we observed that …


Identification And Characterization Of Epicuticular Proteins Of Nematodes Sharing Motifs With Cuticular Proteins Of Arthropods, Bruno Betschart, Marco Bisoffi, Ferial Alaeddine Oct 2022

Identification And Characterization Of Epicuticular Proteins Of Nematodes Sharing Motifs With Cuticular Proteins Of Arthropods, Bruno Betschart, Marco Bisoffi, Ferial Alaeddine

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Specific collagens and insoluble proteins called cuticlins are major constituents of the nematode cuticles. The epicuticle, which forms the outermost electron-dense layer of the cuticle, is composed of another category of insoluble proteins called epicuticlins. It is distinct from the insoluble cuticlins localized in the cortical layer and the fibrous ribbon underneath lateral alae. Our objective was to identify and characterize genes and their encoded proteins forming the epicuticle. The combination between previously obtained laboratory results and recently made available data through the whole-genome shotgun contigs (WGS) and the transcriptome Shotgun Assembly (TSA) sequencing projects of Ascaris suum allowed us …


Escherichia Coli Alanyl-Trna Synthetase Maintains Proofreading Activity And Translational Accuracy Under Oxidative Stress, Arundhati Kavoor, Paul Kelly, Michael Ibba Feb 2022

Escherichia Coli Alanyl-Trna Synthetase Maintains Proofreading Activity And Translational Accuracy Under Oxidative Stress, Arundhati Kavoor, Paul Kelly, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Aminoacyl-tRNA synthetases (aaRSs) are enzymes that synthesize aminoacyl-tRNAs to facilitate translation of the genetic code. Quality control by aaRS proofreading and other mechanisms maintains translational accuracy, which promotes cellular viability. Systematic disruption of proofreading, as recently demonstrated for alanyl-tRNA synthetase (AlaRS), leads to dysregulation of the proteome and reduced viability. Recent studies showed that environmental challenges such as exposure to reactive oxygen species can also alter aaRS synthetic and proofreading functions, prompting us to investigate if oxidation might positively or negatively affect AlaRS activity. We found that while oxidation leads to modification of several residues in Escherichia coli AlaRS, unlike …


Characterizing The Amino Acid Activation Center Of The Naturally Editing-Deficient Aminoacyl-Trna Synthetase Phers In Mycoplasma Mobile, Nien-Ching Han, Arundhati Kavoor, Michael Ibba Jan 2022

Characterizing The Amino Acid Activation Center Of The Naturally Editing-Deficient Aminoacyl-Trna Synthetase Phers In Mycoplasma Mobile, Nien-Ching Han, Arundhati Kavoor, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

To ensure correct amino acids are incorporated during protein synthesis, aminoacyl-tRNA synthetases (aaRSs) employ proofreading mechanisms collectively referred to as editing. Although editing is important for viability, editing-deficient aaRSs have been identified in host-dependent organisms. In Mycoplasma mobile, editing-deficient PheRS and LeuRS have been identified. We characterized the amino acid activation site of MmPheRS and identified a previously unknown hyperaccurate mutation, L287F. Additionally, we report that m-Tyr, an oxidation byproduct of Phe which is toxic to editing-deficient cells, is poorly discriminated by MmPheRS activation and is not subjected to editing. Furthermore, expressing MmPheRS and the hyperaccurate variants renders …


Human Oncoprotein 5mp Suppresses General And Repeat-Associated Non-Aug Translation Via Eif3 By A Common Mechanism, Chingakham Ranjit Singh, M. Rebecca Glineburg, Chelsea Moore, Naoki Tani, Rahul Jaiswal, Ye Zou, Eric Aube, Sarah Gillaspie, Mackenzie Thornton, Ariana Cecil, Madelyn Hilgers, Azuma Takasu, Izumi Asano, Masayo Asano, Carlos R. Escalante, Akira Nakamura, Peter K. Todd, Katsura Asano Jul 2021

Human Oncoprotein 5mp Suppresses General And Repeat-Associated Non-Aug Translation Via Eif3 By A Common Mechanism, Chingakham Ranjit Singh, M. Rebecca Glineburg, Chelsea Moore, Naoki Tani, Rahul Jaiswal, Ye Zou, Eric Aube, Sarah Gillaspie, Mackenzie Thornton, Ariana Cecil, Madelyn Hilgers, Azuma Takasu, Izumi Asano, Masayo Asano, Carlos R. Escalante, Akira Nakamura, Peter K. Todd, Katsura Asano

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

eIF5-mimic protein (5MP) is a translational regulatory protein that binds the small ribosomal subunit and modulates its activity. 5MP is proposed to reprogram non-AUG translation rates for oncogenes in cancer, but its role in controlling non-AUG initiated synthesis of deleterious repeat-peptide products, such as FMRpolyG observed in fragile-X-associated tremor ataxia syndrome (FXTAS), is unknown. Here, we show that 5MP can suppress both general and repeat-associated non-AUG (RAN) translation by a common mechanism in a manner dependent on its interaction with eIF3. Essentially, 5MP displaces eIF5 through the eIF3c subunit within the preinitiation complex (PIC), thereby increasing the accuracy of initiation. …


Deacylated Trna Accumulation Is A Trigger For Bacterial Antibiotic Persistence Independent Of The Stringent Response, Whitney N. Wood, Kyle Mohler, Jesse Rinehart, Michael Ibba Jun 2021

Deacylated Trna Accumulation Is A Trigger For Bacterial Antibiotic Persistence Independent Of The Stringent Response, Whitney N. Wood, Kyle Mohler, Jesse Rinehart, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Bacterial antibiotic persistence occurs when bacteria are treated with an antibiotic and the majority of the population rapidly dies off, but a small subpopulation enters into a dormant, persistent state and evades death. Diverse pathways leading to nucleoside triphosphate (NTP) depletion and restricted translation have been implicated in persistence, suggesting alternative redundant routes may exist to initiate persister formation. To investigate the molecular mechanism of one such pathway, functional variants of an essential component of translation (phenylalanyltRNA synthetase [PheRS]) were used to study the effects of quality control on antibiotic persistence. Upon amino acid limitation, elevated PheRS quality control led …


The Mechanism Of Β-N-Methylamino-L-Alanine Inhibition Of Trna Aminoacylation And Its Impact On Misincorporation, Nien-Ching Han, Tammy J. Bullwinkle, Kaeli F. Loeb, Kym F. Faull, Kyle Mohler, Jesse Rinehart, Michael Ibba Jan 2021

The Mechanism Of Β-N-Methylamino-L-Alanine Inhibition Of Trna Aminoacylation And Its Impact On Misincorporation, Nien-Ching Han, Tammy J. Bullwinkle, Kaeli F. Loeb, Kym F. Faull, Kyle Mohler, Jesse Rinehart, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

β-N-methylamino-l-alanine (BMAA) is a nonproteinogenic amino acid that has been associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). BMAA has been found in human protein extracts; however, the mechanism by which it enters the proteome is still unclear. It has been suggested that BMAA is misincorporated at serine codons during protein synthesis, but direct evidence of its cotranslational incorporation is currently lacking. Here, using LC-MS–purified BMAA and several biochemical assays, we sought to determine whether any aminoacyl-tRNA synthetase (aaRS) utilizes BMAA as a substrate for aminoacylation. Despite BMAA's previously predicted misincorporation at serine …


Modulation Of Escherichia Coli Translation By The Specific Inactivation Of TrnaGly Under Oxidative Stress, Lorenzo Eugenio Leiva, Andrea Pincheira, Sara Elgamal, Sandra D. Kienast, Verónica Bravo, Johannes Leufken, Daniela Gutiérrez, Sebastian A. Leidel, Michael Ibba, Assaf Katz Aug 2020

Modulation Of Escherichia Coli Translation By The Specific Inactivation Of TrnaGly Under Oxidative Stress, Lorenzo Eugenio Leiva, Andrea Pincheira, Sara Elgamal, Sandra D. Kienast, Verónica Bravo, Johannes Leufken, Daniela Gutiérrez, Sebastian A. Leidel, Michael Ibba, Assaf Katz

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Bacterial oxidative stress responses are generally controlled by transcription factors that modulate the synthesis of RNAs with the aid of some sRNAs that control the stability, and in some cases the translation, of specific mRNAs. Here, we report that oxidative stress additionally leads to inactivation of tRNAGly in Escherichia coli, inducing a series of physiological changes. The observed inactivation of tRNAGly correlated with altered efficiency of translation of Gly codons, suggesting a possible mechanism of translational control of gene expression under oxidative stress. Changes in translation also depended on the availability of glycine, revealing a mechanism whereby bacteria …


Translational Regulation Of Environmental Adaptation In Bacteria, Rodney Tollerson Ii, Michael Ibba Jun 2020

Translational Regulation Of Environmental Adaptation In Bacteria, Rodney Tollerson Ii, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Bacteria must rapidly respond to both intracellular and environmental changes to survive. One critical mechanism to rapidly detect and adapt to changes in environmental conditions is control of gene expression at the level of protein synthesis. At each of the three major steps of translation—initiation, elongation, and termination—cells use stimuli to tune translation rate and cellular protein concentrations. For example, changes in nutrient concentrations in the cell can lead to translational responses involving mechanisms such as dynamic folding of riboswitches during translation initiation or the synthesis of alarmones, which drastically alter cell physiology. Moreover, the cell can fine-tune the levels …


Aminoacyl-Trna Synthetases, Miguel Angel Rubio Gomez, Michael Ibba Apr 2020

Aminoacyl-Trna Synthetases, Miguel Angel Rubio Gomez, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The aminoacyl-tRNA synthetases are an essential and universally distributed family of enzymes that plays a critical role in protein synthesis, pairing tRNAs with their cognate amino acids for decoding mRNAs according to the genetic code. Synthetases help to ensure accurate translation of the genetic code by using both highly accurate cognate substrate recognition and stringent proofreading of noncognate products. While alterations in the quality control mechanisms of synthetases are generally detrimental to cellular viability, recent studies suggest that in some instances such changes facilitate adaption to stress conditions. Beyond their central role in translation, synthetases are also emerging as key …


Targeting Trna-Synthetase Interactions Towards Novel Therapeutic Discovery Against Eukaryotic Pathogens, Paul Kelly, Fatemeh Hadi-Nezhad, Dennis Y. Liu, Travis J. Lawrence, Roger G. Linington, Michael Ibba, David H. Ardell Feb 2020

Targeting Trna-Synthetase Interactions Towards Novel Therapeutic Discovery Against Eukaryotic Pathogens, Paul Kelly, Fatemeh Hadi-Nezhad, Dennis Y. Liu, Travis J. Lawrence, Roger G. Linington, Michael Ibba, David H. Ardell

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The development of chemotherapies against eukaryotic pathogens is especially challenging because of both the evolutionary conservation of drug targets between host and parasite, and the evolution of strain-dependent drug resistance. There is a strong need for new nontoxic drugs with broad-spectrum activity against trypanosome parasites such as Leishmania and Trypanosoma. A relatively untested approach is to target macromolecular interactions in parasites rather than small molecular interactions, under the hypothesis that the features specifying macromolecular interactions diverge more rapidly through coevolution. We computed tRNA Class-Informative Features in humans and independently in eight distinct clades of trypanosomes, identifying parasite-specific informative features, …


A Native Function For Ran Translation And Cgg Repeats In Regulating Fragile X Protein Synthesis, Caitlin M. Rodriguez, Shannon E. Wright, Michael G. Kearse, Jill M. Haenfler, Brittany N. Flores, Yu Liu, Marius F. Ifrim, M. Rebecca Glineburg, Amy Krans, Paymaan Jafar-Nejad, Michael A. Sutton, Gary J. Bassell, Jack M. Parent, Frank Rigo, Sami J. Barmada, Peter K. Todd Feb 2020

A Native Function For Ran Translation And Cgg Repeats In Regulating Fragile X Protein Synthesis, Caitlin M. Rodriguez, Shannon E. Wright, Michael G. Kearse, Jill M. Haenfler, Brittany N. Flores, Yu Liu, Marius F. Ifrim, M. Rebecca Glineburg, Amy Krans, Paymaan Jafar-Nejad, Michael A. Sutton, Gary J. Bassell, Jack M. Parent, Frank Rigo, Sami J. Barmada, Peter K. Todd

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Repeat-associated non-AUG-initiated translation of expanded CGG repeats (CGG RAN) from the FMR1 5′-leader produces toxic proteins that contribute to neurodegeneration in fragile X-associated tremor/ataxia syndrome. Here we describe how unexpanded CGG repeats and their translation play conserved roles in regulating fragile X protein (FMRP) synthesis. In neurons, CGG RAN acts as an inhibitory upstream open reading frame to suppress basal FMRP production. Activation of mGluR5 receptors enhances FMRP synthesis. This enhancement requires both the CGG repeat and CGG RAN initiation sites. Using non-cleaving antisense oligonucleotides (ASOs), we selectively blocked CGG RAN. This ASO blockade enhanced endogenous FMRP expression in human …


Alanyl-Trna Synthetase Quality Control Prevents Global Dysregulation Of The Escherichia Coli Proteome, Paul Kelly, Nicholas Backes, Kyle Mohler, Christopher Buser, Arundhati Kavoor, Jesse Rinehart, Gregory Phillips, Michael Ibba Dec 2019

Alanyl-Trna Synthetase Quality Control Prevents Global Dysregulation Of The Escherichia Coli Proteome, Paul Kelly, Nicholas Backes, Kyle Mohler, Christopher Buser, Arundhati Kavoor, Jesse Rinehart, Gregory Phillips, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Mechanisms have evolved to prevent errors in replication, transcription, and translation of genetic material, with translational errors occurring most frequently. Errors in protein synthesis can occur at two steps, during tRNA aminoacylation and ribosome decoding. Recent advances in protein mass spectrometry have indicated that previous reports of translational errors have potentially underestimated the frequency of these events, but also that the majority of translational errors occur during ribosomal decoding, suggesting that aminoacylation errors are evolutionarily less tolerated. Despite that interpretation, there is evidence that some aminoacylation errors may be regulated, and thus provide a benefit to the cell, while others …


The Fitness Landscape Of The African Salmonella Typhimurium St313 Strain D23580 Reveals Unique Properties Of The Pbt1 Plasmid, Rocío Canals, Roy R. Chaudhuri, Rebecca E. Steiner, Siân V. Owen, Natalia Quinones-Olvera, Melita A. Gordon, Michael Baym, Michael Ibba, Jay C. D. Hinton Sep 2019

The Fitness Landscape Of The African Salmonella Typhimurium St313 Strain D23580 Reveals Unique Properties Of The Pbt1 Plasmid, Rocío Canals, Roy R. Chaudhuri, Rebecca E. Steiner, Siân V. Owen, Natalia Quinones-Olvera, Melita A. Gordon, Michael Baym, Michael Ibba, Jay C. D. Hinton

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We have used a transposon insertion sequencing (TIS) approach to establish the fitness landscape of the African Salmonella enterica serovar Typhimurium ST313 strain D23580, to complement our previous comparative genomic and functional transcriptomic studies. We used a genome-wide transposon library with insertions every 10 nucleotides to identify genes required for survival and growth in vitro and during infection of murine macrophages. The analysis revealed genomic regions important for fitness under two in vitro growth conditions. Overall, 724 coding genes were required for optimal growth in LB medium, and 851 coding genes were required for growth in SPI-2-inducing minimal medium. These …


Translational Control Of Antibiotic Resistance, Anne Witzky, Rodney Tollerson Ii, Michael Ibba Jul 2019

Translational Control Of Antibiotic Resistance, Anne Witzky, Rodney Tollerson Ii, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Many antibiotics available in the clinic today directly inhibit bacterial translation. Despite the past success of such drugs, their efficacy is diminishing with the spread of antibiotic resistance. Through the use of ribosomal modifications, ribosomal protection proteins, translation elongation factors and mistranslation, many pathogens are able to establish resistance to common therapeutics. However, current efforts in drug discovery are focused on overcoming these obstacles through the modification or discovery of new treatment options. Here, we provide an overview for common mechanisms of resistance to translation-targeting drugs and summarize several important breakthroughs in recent drug development.


Fars2 Mutations Presenting With Pure Spastic Paraplegia And Lesions Of The Dentate Nuclei, Supreet K. Sahai, Rebecca E. Steiner, Margaret G. Au, John M. Graham, Norikio Salamon, Michael Ibba, Tyler M. Pierson Aug 2018

Fars2 Mutations Presenting With Pure Spastic Paraplegia And Lesions Of The Dentate Nuclei, Supreet K. Sahai, Rebecca E. Steiner, Margaret G. Au, John M. Graham, Norikio Salamon, Michael Ibba, Tyler M. Pierson

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Mutations in FARS2, the gene encoding the mitochondrial phenylalanine‐tRNA synthetase (mtPheRS), have been linked to a range of phenotypes including epileptic encephalopathy, developmental delay, and motor dysfunction. We report a 9‐year‐old boy with novel compound heterozygous variants of FARS2, presenting with a pure spastic paraplegia syndrome associated with bilateral signal abnormalities in the dentate nuclei. Exome sequencing identified a paternal nonsense variant (Q216X) lacking the catalytic core and anticodon‐binding regions, and a maternal missense variant (P136H) possessing partial enzymatic activity. This case confirms and expands the phenotype related to FARS mutations with regards to clinical presentation and neuroimaging findings.


Microgel Core/Shell Architectures As Targeted Agents For Fibrinolysis, Purva Kodlekere, L. Andrew Lyon Jun 2018

Microgel Core/Shell Architectures As Targeted Agents For Fibrinolysis, Purva Kodlekere, L. Andrew Lyon

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We demonstrate the utility of microgel core/shell structures conjugated to fibrin-specific peptides as fibrinolytic agents. Poly(N-isopropylmethacrylamide) (pNIPMAm) based microgels conjugated to the peptide GPRPFPAC (GPRP) were observed to bring about fibrin clot erosion, merely through exploitation of the dynamic nature of the clots. These results suggest the potential utility of peptide–microgel hybrids in clot disruption and clotting modulation.


Codon Usage Revisited: Lack Of Correlation Between Codon Usage And The Number Of Trna Genes In Enterobacteria, Joaquín Rojas, Gabriel Castillo, Lorenzo Eugenio Leiva, Sara Elgamal, Omar Orellana, Michael Ibba, Assaf Katz Jun 2018

Codon Usage Revisited: Lack Of Correlation Between Codon Usage And The Number Of Trna Genes In Enterobacteria, Joaquín Rojas, Gabriel Castillo, Lorenzo Eugenio Leiva, Sara Elgamal, Omar Orellana, Michael Ibba, Assaf Katz

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

It is widely believed that if a high number of genes are found for any tRNA in a rapidly replicating bacteria, then the cytoplasmic levels of that tRNA will be high and an open reading frame containing a higher frequency of the complementary codon will be translated faster. This idea is based on correlations between the number of tRNA genes, tRNA concentration and the frequency of codon usage observed in a limited number of strains as well as from the fact that artificially changing the number of tRNA genes alters translation efficiency and consequently the amount of properly folded protein …


Ef-P Post-Translational Modification Has Variable Impact On Polyproline Translation In Bacillus Subtilis, Anne Witzky, Katherine R. Hummels, Rodney Tollerson Ii, Andrei Rajkovic, Lisa A. Jones, Daniel B. Kearns, Michael Ibba Apr 2018

Ef-P Post-Translational Modification Has Variable Impact On Polyproline Translation In Bacillus Subtilis, Anne Witzky, Katherine R. Hummels, Rodney Tollerson Ii, Andrei Rajkovic, Lisa A. Jones, Daniel B. Kearns, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Elongation factor P (EF-P) is a ubiquitous translation factor that facilitates translation of polyproline motifs. In order to perform this function, EF-P generally requires posttranslational modification (PTM) on a conserved residue. Although the position of the modification is highly conserved, the structure can vary widely between organisms. In Bacillus subtilis, EF-P is modified at Lys32 with a 5-aminopentanol moiety. Here, we use a forward genetic screen to identify genes involved in 5-aminopentanolylation. Tandem mass spectrometry analysis of the PTM mutant strains indicated that ynbB, gsaB, and ymfI are required for modification and that yaaO, yfkA, and …


Translational Fidelity, Mistranslation, And The Cellular Responses To Stress, Kyle Mohler, Michael Ibba Aug 2017

Translational Fidelity, Mistranslation, And The Cellular Responses To Stress, Kyle Mohler, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Faithful translation of mRNA into the corresponding polypeptide is a complex multistep process, requiring accurate amino acid selection, transfer RNA (tRNA) charging and mRNA decoding on the ribosome. Key players in this process are aminoacyl-tRNA synthetases (aaRSs), which not only catalyse the attachment of cognate amino acids to their respective tRNAs, but also selectively hydrolyse incorrectly activated non-cognate amino acids and/or misaminoacylated tRNAs. This aaRS proofreading provides quality control checkpoints that exclude non-cognate amino acids during translation, and in so doing helps to prevent the formation of an aberrant proteome. However, despite the intrinsic need for high accuracy during translation, …


Carbonyl Reduction By Ymfi Completes The Modification Of Ef-P In Bacillus Subtilis To Prevent Accumulation Of An Inhibitory Modification State, Katherine R. Hummels, Anne Witzky, Andrei Rajkovic, Rodney Tollerson Ii, Lisa A. Jones, Michael Ibba, Daniel B. Kearns Aug 2017

Carbonyl Reduction By Ymfi Completes The Modification Of Ef-P In Bacillus Subtilis To Prevent Accumulation Of An Inhibitory Modification State, Katherine R. Hummels, Anne Witzky, Andrei Rajkovic, Rodney Tollerson Ii, Lisa A. Jones, Michael Ibba, Daniel B. Kearns

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Translation elongation factor P (EF‐P) in Bacillus subtilis is required for a form of surface migration called swarming motility. Furthermore, B. subtilis EF‐P is post‐translationally modified with a 5‐aminopentanol group but the pathway necessary for the synthesis and ligation of the modification is unknown. Here we determine that the protein YmfI catalyzes the reduction of EF‐P‐5 aminopentanone to EF‐P‐5 aminopentanol. In the absence of YmfI, accumulation of 5‐aminopentanonated EF‐P is inhibitory to swarming motility. Suppressor mutations that enhanced swarming in the absence of YmfI were found at two positions on EF‐P, including one that changed the conserved modification site (Lys …


Elongation Factor P Interactions With The Ribosome Are Independent Of Pausing, Rodney Tollerson Ii, Anne Witzky, Michael Ibba Aug 2017

Elongation Factor P Interactions With The Ribosome Are Independent Of Pausing, Rodney Tollerson Ii, Anne Witzky, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Bacterial elongation factor P (EF-P) plays a pivotal role in the translation of polyproline motifs. To stimulate peptide bond formation, EF-P must enter the ribosome via an empty E-site. Using fluorescence-based single-molecule tracking, Mohapatra et al. (S. Mohapatra, H. Choi, X. Ge, S. Sanyal, and J. C. Weisshaar, mBio 8:e00300-17, 2017, https://doi.org/10.1128/mBio.00300-17 ) monitored the cellular distribution of EF-P and quantified the frequency of association between EF-P and the ribosome under various conditions. Findings from the study showed that EF-P has a localization pattern that is strikingly similar to that of ribosomes. Intriguingly, EF-P was seen to bind ribosomes more …


Editing Of Misaminoacylated Trna Controls The Sensitivity Of Amino Acid Stress Responses In Saccharomyces Cerevisiae, Kyle Mohler, Rebecca Mann, Tammy J. Bullwinkle, Kyle W. Hopkins, Lin Hwang, Noah M. Reynolds, Brandon Gassaway, Hans-Rudolph Aerni, Jesse Rinehart, Michael Polymenis, Kym F. Faull, Michael Ibba Feb 2017

Editing Of Misaminoacylated Trna Controls The Sensitivity Of Amino Acid Stress Responses In Saccharomyces Cerevisiae, Kyle Mohler, Rebecca Mann, Tammy J. Bullwinkle, Kyle W. Hopkins, Lin Hwang, Noah M. Reynolds, Brandon Gassaway, Hans-Rudolph Aerni, Jesse Rinehart, Michael Polymenis, Kym F. Faull, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Amino acid starvation activates the protein kinase Gcn2p, leading to changes in gene expression and translation. Gcn2p is activated by deacylated tRNA, which accumulates when tRNA aminoacylation is limited by lack of substrates or inhibition of synthesis. Pairing of amino acids and deacylated tRNAs is catalyzed by aminoacyl-tRNA synthetases, which use quality control pathways to maintain substrate specificity. Phenylalanyl-tRNA synthetase (PheRS) maintains specificity via an editing pathway that targets non-cognate Tyr-tRNAPhe. While the primary role of aaRS editing is to prevent misaminoacylation, we demonstrate editing of misaminoacylated tRNA is also required for detection of amino acid starvation by …


Quality Control By Isoleucyl-Trna Synthetase Of Bacillus Subtilis Is Required For Efficient Sporulation, Elizabeth Kermgard, Zhou Yang, Annika-Marisa Michel, Rachel Simari, Jacqueline Wong, Michael Ibba, Beth A. Lazazzera Jan 2017

Quality Control By Isoleucyl-Trna Synthetase Of Bacillus Subtilis Is Required For Efficient Sporulation, Elizabeth Kermgard, Zhou Yang, Annika-Marisa Michel, Rachel Simari, Jacqueline Wong, Michael Ibba, Beth A. Lazazzera

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Isoleucyl-tRNA synthetase (IleRS) is an aminoacyl-tRNA synthetase whose essential function is to aminoacylate tRNAIle with isoleucine. Like some other aminoacyl-tRNA synthetases, IleRS can mischarge tRNAIle and correct this misacylation through a separate post-transfer editing function. To explore the biological significance of this editing function, we created a ileS(T233P) mutant of Bacillus subtilis that allows tRNAIle mischarging while retaining wild-type Ile-tRNAIle synthesis activity. As seen in other species defective for aminoacylation quality control, the growth rate of the ileS(T233P) strain was not significantly different from wild-type. When the ileS(T233P) strain was assessed for its ability to promote …


Ms-Read: Quantitative Measurement Of Amino Acid Incorporation, Kyle Mohler, Hans-Rudolph Aerni, Brandon Gassaway, Jiqiang Ling, Michael Ibba, Jesse Rinehart Jan 2017

Ms-Read: Quantitative Measurement Of Amino Acid Incorporation, Kyle Mohler, Hans-Rudolph Aerni, Brandon Gassaway, Jiqiang Ling, Michael Ibba, Jesse Rinehart

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Ribosomal protein synthesis results in the genetically programmed incorporation of amino acids into a growing polypeptide chain. Faithful amino acid incorporation that accurately reflects the genetic code is critical to the structure and function of proteins as well as overall proteome integrity. Errors in protein synthesis are generally detrimental to cellular processes yet emerging evidence suggest that proteome diversity generated through mistranslation may be beneficial under certain conditions. Cumulative translational error rates have been determined at the organismal level, however codon specific error rates and the spectrum of misincorporation errors from system to system remain largely unexplored. In particular, until …


Synthesis Of Rhamnosylated Arginine Glycopeptides And Determination Of The Glycosidic Linkage In Bacterial Elongation Factor P, Siyao Wang, Leo Corcilius, Phillip B. Sharp, Andrei Rajkovic, Michael Ibba, Benjamin L. Parker, Richard J. Payne Dec 2016

Synthesis Of Rhamnosylated Arginine Glycopeptides And Determination Of The Glycosidic Linkage In Bacterial Elongation Factor P, Siyao Wang, Leo Corcilius, Phillip B. Sharp, Andrei Rajkovic, Michael Ibba, Benjamin L. Parker, Richard J. Payne

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

A new class of N-linked protein glycosylation – arginine rhamnosylation – has recently been discovered as a critical modification for the function of bacterial elongation factor P (EF-P). Herein, we describe the synthesis of suitably protected α- and β-rhamnosylated arginine amino acid “cassettes” that can be directly installed into rhamnosylated peptides. Preparation of a proteolytic fragment of Pseudomonas aeruginosa EF-P bearing both α- and β-rhamnosylated arginine enabled the unequivocal determination of the native glycosidic linkage to be α through 2D NMR and nano-UHPLC-tandem mass spectrometry studies.