Open Access. Powered by Scholars. Published by Universities.®

Amino Acids, Peptides, and Proteins Commons

Open Access. Powered by Scholars. Published by Universities.®

Virus Diseases

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 50

Full-Text Articles in Amino Acids, Peptides, and Proteins

Alphafold2 Modeling And Molecular Dynamics Simulations Of The Conformational Ensembles For The Sars-Cov-2 Spike Omicron Jn.1, Kp.2 And Kp.3 Variants: Mutational Profiling Of Binding Energetics Reveals Epistatic Drivers Of The Ace2 Affinity And Escape Hotspots Of Antibody Resistance, Nishank Raisinghani, Mohammed Alshahrani, Grace Gupta, Gennady M. Verkhivker Sep 2024

Alphafold2 Modeling And Molecular Dynamics Simulations Of The Conformational Ensembles For The Sars-Cov-2 Spike Omicron Jn.1, Kp.2 And Kp.3 Variants: Mutational Profiling Of Binding Energetics Reveals Epistatic Drivers Of The Ace2 Affinity And Escape Hotspots Of Antibody Resistance, Nishank Raisinghani, Mohammed Alshahrani, Grace Gupta, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

AlphaFold2-based atomistic predictions of structures and conformational ensembles of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the most dominant Omicron variants JN.1, KP.1, KP.2 and KP.3 to examine the mechanisms underlying the role of convergent evolution hotspots in balancing ACE2 binding and antibody evasion. Using the ensemble-based mutational scanning of the spike protein residues and computations of binding affinities, we identified binding energy hotspots and characterized the molecular basis underlying epistatic couplings between convergent mutational hotspots. The results suggested the existence of epistatic interactions between convergent mutational sites at L455, F456, Q493 positions that protect and restore …


Exploring Binding Pockets In The Conformational States Of The Sars-Cov-2 Spike Trimers For The Screening Of Allosteric Inhibitors Using Molecular Simulations And Ensemble-Based Ligand Docking, Grace Gupta, Gennady M. Verkhivker May 2024

Exploring Binding Pockets In The Conformational States Of The Sars-Cov-2 Spike Trimers For The Screening Of Allosteric Inhibitors Using Molecular Simulations And Ensemble-Based Ligand Docking, Grace Gupta, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Understanding mechanisms of allosteric regulation remains elusive for the SARS-CoV-2 spike protein, despite the increasing interest and effort in discovering allosteric inhibitors of the viral activity and interactions with the host receptor ACE2. The challenges of discovering allosteric modulators of the SARS-CoV-2 spike proteins are associated with the diversity of cryptic allosteric sites and complex molecular mechanisms that can be employed by allosteric ligands, including the alteration of the conformational equilibrium of spike protein and preferential stabilization of specific functional states. In the current study, we combine conformational dynamics analysis of distinct forms of the full-length spike protein trimers and …


Broad-Spectrum Activity Of Membranolytic Cationic Macrocyclic Peptides Against Multi-Drug Resistant Bacteria And Fungi, Sandeep Lohan, Anastasia G. Konshina, Rakesh K. Tiwari, Roman G. Efremov, Innokentiy Maslennikov, Keykavous Parang Apr 2024

Broad-Spectrum Activity Of Membranolytic Cationic Macrocyclic Peptides Against Multi-Drug Resistant Bacteria And Fungi, Sandeep Lohan, Anastasia G. Konshina, Rakesh K. Tiwari, Roman G. Efremov, Innokentiy Maslennikov, Keykavous Parang

Pharmacy Faculty Articles and Research

The emergence of multidrug-resistant (MDR) strains causes severe problems in the treatment of microbial infections owing to limited treatment options. Antimicrobial peptides (AMPs) are drawing considerable attention as promising antibiotic alternative candidates to combat MDR bacterial and fungal infections. Herein, we present a series of small amphiphilic membrane-active cyclic peptides composed, in part, of various nongenetically encoded hydrophilic and hydrophobic amino acids. Notably, lead cyclic peptides 3b and 4b showed broad-spectrum activity against drug-resistant Gram-positive (MIC = 1.5–6.2 µg/mL) and Gram-negative (MIC = 12.5–25 µg/mL) bacteria, and fungi (MIC = 3.1–12.5 µg/mL). Furthermore, lead peptides displayed substantial antibiofilm action comparable …


Ensemble-Based Mutational Profiling And Network Analysis Of The Sars-Cov-2 Spike Omicron Xbb Lineages For Interactions With The Ace2 Receptor And Antibodies: Cooperation Of Binding Hotspots In Mediating Epistatic Couplings Underlies Binding Mechanism And Immune Escape, Nishank Raisinghani, Mohammed Alshahrani, Grace Gupta, Gennady M. Verkhivker Apr 2024

Ensemble-Based Mutational Profiling And Network Analysis Of The Sars-Cov-2 Spike Omicron Xbb Lineages For Interactions With The Ace2 Receptor And Antibodies: Cooperation Of Binding Hotspots In Mediating Epistatic Couplings Underlies Binding Mechanism And Immune Escape, Nishank Raisinghani, Mohammed Alshahrani, Grace Gupta, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this study, we performed a computational study of binding mechanisms for the SARS-CoV-2 spike Omicron XBB lineages with the host cell receptor ACE2 and a panel of diverse class one antibodies. The central objective of this investigation was to examine the molecular factors underlying epistatic couplings among convergent evolution hotspots that enable optimal balancing of ACE2 binding and antibody evasion for Omicron variants BA.1, BA2, BA.3, BA.4/BA.5, BQ.1.1, XBB.1, XBB.1.5, and XBB.1.5 + L455F/F456L. By combining evolutionary analysis, molecular dynamics simulations, and ensemble-based mutational scanning of spike protein residues in complexes with ACE2, we identified structural stability and binding …


Exploration Of Potential Broad-Spectrum Antiviral Targets In The Enterovirus Replication Element: Identification Of Six Distinct 5' Cloverleaves, Morgan G. Daniels, Meagan E. Werner, Rockwell T. Li, Steven M. Pascal Jan 2024

Exploration Of Potential Broad-Spectrum Antiviral Targets In The Enterovirus Replication Element: Identification Of Six Distinct 5' Cloverleaves, Morgan G. Daniels, Meagan E. Werner, Rockwell T. Li, Steven M. Pascal

Chemistry & Biochemistry Faculty Publications

Enterovirus genomic replication initiates at a predicted RNA cloverleaf (5′CL) at the 5′ end of the RNA genome. The 5′CL contains one stem (SA) and three stem-loops (SLB, SLC, SLD). Here, we present an analysis of 5′CL conservation and divergence for 209 human health-related serotypes from the enterovirus genus, including enterovirus and rhinovirus species. Phylogenetic analysis indicates six distinct 5′CL serotypes that only partially correlate with the species definition. Additional findings include that 5′CL sequence conservation is higher between the EV species than between the RV species, the 5′CL of EVA and EVB are nearly identical, and RVC has the …


Comparative Analysis Of Conformational Dynamics And Systematic Characterization Of Cryptic Pockets In The Sars-Cov-2 Omicron Ba.2, Ba.2.75 And Xbb.1 Spike Complexes With The Ace2 Host Receptor: Confluence Of Binding And Structural Plasticity In Mediating Networks Of Conserved Allosteric Sites, Mohammed Alshahrani, Grace Gupta, Sian Xiao, Peng Tao, Gennady M. Verkhivker Oct 2023

Comparative Analysis Of Conformational Dynamics And Systematic Characterization Of Cryptic Pockets In The Sars-Cov-2 Omicron Ba.2, Ba.2.75 And Xbb.1 Spike Complexes With The Ace2 Host Receptor: Confluence Of Binding And Structural Plasticity In Mediating Networks Of Conserved Allosteric Sites, Mohammed Alshahrani, Grace Gupta, Sian Xiao, Peng Tao, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

In the current study, we explore coarse-grained simulations and atomistic molecular dynamics together with binding energetics scanning and cryptic pocket detection in a comparative examination of conformational landscapes and systematic characterization of allosteric binding sites in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB.1 spike full-length trimer complexes with the host receptor ACE2. Microsecond simulations, Markov state models and mutational scanning of binding energies of the SARS-CoV-2 BA.2 and BA.2.75 receptor binding domain complexes revealed the increased thermodynamic stabilization of the BA.2.75 variant and significant dynamic differences between these Omicron variants. Molecular simulations of the SARS-CoV-2 Omicron spike full-length trimer complexes …


Exploring Conformational Landscapes And Cryptic Binding Pockets In Distinct Functional States Of The Sars-Cov-2 Omicron Ba.1 And Ba.2 Trimers: Mutation-Induced Modulation Of Protein Dynamics And Network-Guided Prediction Of Variant-Specific Allosteric Binding Sites, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta Sep 2023

Exploring Conformational Landscapes And Cryptic Binding Pockets In Distinct Functional States Of The Sars-Cov-2 Omicron Ba.1 And Ba.2 Trimers: Mutation-Induced Modulation Of Protein Dynamics And Network-Guided Prediction Of Variant-Specific Allosteric Binding Sites, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta

Mathematics, Physics, and Computer Science Faculty Articles and Research

A significant body of experimental structures of SARS-CoV-2 spike trimers for the BA.1 and BA.2 variants revealed a considerable plasticity of the spike protein and the emergence of druggable binding pockets. Understanding the interplay of conformational dynamics changes induced by the Omicron variants and the identification of cryptic dynamic binding pockets in the S protein is of paramount importance as exploring broad-spectrum antiviral agents to combat the emerging variants is imperative. In the current study, we explore conformational landscapes and characterize the universe of binding pockets in multiple open and closed functional spike states of the BA.1 and BA.2 Omicron …


Balancing Functional Tradeoffs Between Protein Stability And Ace2 Binding In The Sars-Cov-2 Omicron Ba.2, Ba.2.75 And Xbb Lineages: Dynamics-Based Network Models Reveal Epistatic Effects Modulating Compensatory Dynamic And Energetic Changes, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta May 2023

Balancing Functional Tradeoffs Between Protein Stability And Ace2 Binding In The Sars-Cov-2 Omicron Ba.2, Ba.2.75 And Xbb Lineages: Dynamics-Based Network Models Reveal Epistatic Effects Modulating Compensatory Dynamic And Energetic Changes, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta

Mathematics, Physics, and Computer Science Faculty Articles and Research

Evolutionary and functional studies suggested that the emergence of the Omicron variants can be determined by multiple fitness trade-offs including the immune escape, binding affinity for ACE2, conformational plasticity, protein stability and allosteric modulation. In this study, we systematically characterize conformational dynamics, structural stability and binding affinities of the SARS-CoV-2 Spike Omicron complexes with the host receptor ACE2 for BA.2, BA.2.75, XBB.1 and XBB.1.5 variants. We combined multiscale molecular simulations and dynamic analysis of allosteric interactions together with the ensemble-based mutational scanning of the protein residues and network modeling of epistatic interactions. This multifaceted computational study characterized molecular mechanisms and …


An Investigation On The Effect Of Conserved Hinge Histidine On Influenza Hemagglutinin(Ha2) Protein Conformation Using Md Simulations, Nada Tolba May 2023

An Investigation On The Effect Of Conserved Hinge Histidine On Influenza Hemagglutinin(Ha2) Protein Conformation Using Md Simulations, Nada Tolba

Chemistry & Biochemistry Undergraduate Honors Theses

Hemagglutinin is a protein on the surface of Human Influenza Viruses.1 It is composed of two glycopolypeptide domains, the HA1 and HA2 domains. Previous studies have found that across different strains of Influenza viruses, HIS435 residues remain conserved.4 In studies where mutations occurred in hinge-site histadine residues, the Influenza virus was inactive.4 These investigations indicated a significant role of HIS435 (hinge-site histadines) in virulence. Four systems were created using Molecular dynamics (MD) simulations. Each system was composed of an Isolated HA2 trimer solvated in a 150 mM NaCl rectangular water box at 310 K under isobaric and …


Coarse-Grained Molecular Simulations And Ensemble-Based Mutational Profiling Of Protein Stability In The Different Functional Forms Of The Sars-Cov-2 Spike Trimers: Balancing Stability And Adaptability In Ba.1, Ba.2 And Ba.2.75 Variants, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta Apr 2023

Coarse-Grained Molecular Simulations And Ensemble-Based Mutational Profiling Of Protein Stability In The Different Functional Forms Of The Sars-Cov-2 Spike Trimers: Balancing Stability And Adaptability In Ba.1, Ba.2 And Ba.2.75 Variants, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta

Mathematics, Physics, and Computer Science Faculty Articles and Research

Evolutionary and functional studies have suggested that the emergence of Omicron variants can be determined by multiple fitness tradeoffs including immune escape, binding affinity, conformational plasticity, protein stability, and allosteric modulation. In this study, we embarked on a systematic comparative analysis of the conformational dynamics, electrostatics, protein stability, and allostery in the different functional states of spike trimers for BA.1, BA.2, and BA.2.75 variants. Using efficient and accurate coarse-grained simulations and atomistic reconstruction of the ensembles, we examined the conformational dynamics of the spike trimers that agree with the recent functional studies, suggesting that BA.2.75 trimers are the most stable …


Circulating Plasma Exosomal Proteins Of Either Shiv-Infected Rhesus Macaque Or Hiv-Infected Patient Indicates A Link To Neuropathogenesis, Partha K. Chandra, Stephen E. Braun, Sudipa Maity, Jorge A. Castorena-Gonzalez, Hogyoung Kim, Jeffrey G. Shaffer, Sinisa Cikic, Ibolya Rutkai, Jia Fan, Jessie J. Guidry, David K. Worthylake, Chenzhong Li, Asim B. Abdel-Mageed, David W. Busija Mar 2023

Circulating Plasma Exosomal Proteins Of Either Shiv-Infected Rhesus Macaque Or Hiv-Infected Patient Indicates A Link To Neuropathogenesis, Partha K. Chandra, Stephen E. Braun, Sudipa Maity, Jorge A. Castorena-Gonzalez, Hogyoung Kim, Jeffrey G. Shaffer, Sinisa Cikic, Ibolya Rutkai, Jia Fan, Jessie J. Guidry, David K. Worthylake, Chenzhong Li, Asim B. Abdel-Mageed, David W. Busija

School of Medicine Faculty Publications

Despite the suppression of human immunodeficiency virus (HIV) replication by combined antiretroviral therapy (cART), 50–60% of HIV-infected patients suffer from HIV-associated neurocognitive disorders (HAND). Studies are uncovering the role of extracellular vesicles (EVs), especially exosomes, in the central nervous system (CNS) due to HIV infection. We investigated links among circulating plasma exosomal (crExo) proteins and neuropathogenesis in simian/human immunodeficiency virus (SHIV)-infected rhesus macaques (RM) and HIV-infected and cART treated patients (Patient-Exo). Isolated EVs from SHIV-infected (SHIV-Exo) and uninfected (CTL-Exo) RM were predominantly exosomes (particle size < 150 nm). Proteomic analysis quantified 5654 proteins, of which 236 proteins (~4%) were significantly, differentially expressed (DE) between SHIV-/CTL-Exo. Interestingly, different CNS cell specific markers were abundantly expressed in crExo. Proteins involved in latent viral reactivation, neuroinflammation, neuropathology-associated interactive as well as signaling molecules were expressed at significantly higher levels in SHIV-Exo than CTL-Exo. However, proteins involved in mitochondrial biogenesis, ATP production, autophagy, endocytosis, exocytosis, and cytoskeleton organization were significantly less expressed in SHIV-Exo than CTL-Exo. Interestingly, proteins involved in oxidative stress, mitochondrial biogenesis, ATP production, and autophagy were significantly downregulated in primary human brain microvascular endothelial cells exposed with HIV+/cART+ Patient-Exo. We showed that Patient-Exo significantly increased blood–brain barrier permeability, possibly due to loss of platelet endothelial cell adhesion molecule-1 protein and actin cytoskeleton structure. Our novel findings suggest that circulating exosomal proteins expressed CNS cell markers—possibly associated with viral reactivation and neuropathogenesis—that may elucidate the etiology of HAND.


Interactions Between Hiv And Opioids On Antiretroviral Accumulation, The Blood Brain Barrier, And The Inflammatory Response In The Brain., Kara Rademeyer Jan 2023

Interactions Between Hiv And Opioids On Antiretroviral Accumulation, The Blood Brain Barrier, And The Inflammatory Response In The Brain., Kara Rademeyer

Theses and Dissertations

The complex mechanisms related to HIV infection, neurodegeneration, and chronic neuroinflammation collectively describe neuroHIV (Hauser et al. 2007; Chang et al. 2014; Smith et al. 2014). Specifically, opioid abuse, poor penetration of antiretroviral (ARV) drugs, chronic inflammation and neuronal injury/degeneration are all implicated in neuroHIV (Fantuzzi et al. 2003; Letendre et al. 2004; Verani et al. 2005; Duncan and Sattentau 2011; Hong and Banks 2015; Simoes and Justino 2015; Olivier et al. 2018; Murphy et al. 2019; Osborne et al. 2020). For the first time, we demonstrate that morphine, fentanyl, and methadone in vivo alter the brain accumulation of ARVs, …


Proposing An Rna Interference (Rnai)-Based Treatment For Human Immunodeficiency Virus (Hiv) By Analyzing The Post-Transcriptional Gene Targeting Of Sars-Cov-2, Hepatitis C Virus, And A549 Lung Cancer Cells, Arjun Jagdeesh Jan 2023

Proposing An Rna Interference (Rnai)-Based Treatment For Human Immunodeficiency Virus (Hiv) By Analyzing The Post-Transcriptional Gene Targeting Of Sars-Cov-2, Hepatitis C Virus, And A549 Lung Cancer Cells, Arjun Jagdeesh

Undergraduate Research Posters

Human Immunodeficiency Virus (HIV) is a retrovirus that infects CD4+ T cell lymphocytes in humans, leading to the development of Acquired Immunodeficiency Syndrome (AIDS) if left untreated. While current treatment methods, including antiretroviral combination treatments, effectively limit HIV replication, HIV can evade these treatments due to its high mutation rate. Long-term antiretroviral treatment can also be toxic to patients, meaning patients would benefit from a new mechanism of HIV treatment. RNA interference (RNAi) is an antiviral pathway found in mammals, plants, and insects that involves a small-interfering RNA that is incorporated into a protein complex called the RNA-induced Silencing Complex …


Synthesis And Evaluation Of Anti-Hiv Activity Of Mono- And Di-Substituted Phosphonamidate Conjugates Of Tenofovir, Aaminat Qureshi, Louise A. Ouattara, Naglaa Salem El-Sayed, Amita Verma, Gustavo F. Doncel, Muhammad Iqbal Choudhary, Hina Siddiqui, Keykavous Parang Jul 2022

Synthesis And Evaluation Of Anti-Hiv Activity Of Mono- And Di-Substituted Phosphonamidate Conjugates Of Tenofovir, Aaminat Qureshi, Louise A. Ouattara, Naglaa Salem El-Sayed, Amita Verma, Gustavo F. Doncel, Muhammad Iqbal Choudhary, Hina Siddiqui, Keykavous Parang

Pharmacy Faculty Articles and Research

The activity of nucleoside and nucleotide analogs as antiviral agents requires phosphorylation by endogenous enzymes. Phosphate-substituted analogs have low bioavailability due to the presence of ionizable negatively-charged groups. To circumvent these limitations, several prodrug approaches have been proposed. Herein, we hypothesized that the conjugation or combination of the lipophilic amide bond with nucleotide-based tenofovir (TFV) (1) could improve the anti-HIV activity. During the current study, the hydroxyl group of phosphonates in TFV was conjugated with the amino group of L-alanine, L-leucine, L-valine, and glycine amino acids and other long fatty ester hydrocarbon chains to synthesize 43 derivatives. Several …


Integrating Conformational Dynamics And Perturbation-Based Network Modeling For Mutational Profiling Of Binding And Allostery In The Sars-Cov-2 Spike Variant Complexes With Antibodies: Balancing Local And Global Determinants Of Mutational Escape Mechanisms, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan Jul 2022

Integrating Conformational Dynamics And Perturbation-Based Network Modeling For Mutational Profiling Of Binding And Allostery In The Sars-Cov-2 Spike Variant Complexes With Antibodies: Balancing Local And Global Determinants Of Mutational Escape Mechanisms, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan

Mathematics, Physics, and Computer Science Faculty Articles and Research

n this study, we combined all-atom MD simulations, the ensemble-based mutational scanning of protein stability and binding, and perturbation-based network profiling of allosteric interactions in the SARS-CoV-2 spike complexes with a panel of cross-reactive and ultra-potent single antibodies (B1-182.1 and A23-58.1) as well as antibody combinations (A19-61.1/B1-182.1 and A19-46.1/B1-182.1). Using this approach, we quantify the local and global effects of mutations in the complexes, identify protein stability centers, characterize binding energy hotspots, and predict the allosteric control points of long-range interactions and communications. Conformational dynamics and distance fluctuation analysis revealed the antibody-specific signatures of protein stability and flexibility of the …


Biophysical Insight Into The Sars-Cov2 Spike–Ace2 Interaction And Its Modulation By Hepcidin Through A Multifaceted Computational Approach, Hamid Hadi-Alijanvand, Luisa Di Paola, Guang Hu, David M. Leitner, Gennady M. Verkhivker, Peixin Sun, Humanath Poudel, Alessandro Giuliani May 2022

Biophysical Insight Into The Sars-Cov2 Spike–Ace2 Interaction And Its Modulation By Hepcidin Through A Multifaceted Computational Approach, Hamid Hadi-Alijanvand, Luisa Di Paola, Guang Hu, David M. Leitner, Gennady M. Verkhivker, Peixin Sun, Humanath Poudel, Alessandro Giuliani

Mathematics, Physics, and Computer Science Faculty Articles and Research

At the center of the SARS-CoV2 infection, the spike protein and its interaction with the human receptor ACE2 play a central role in the molecular machinery of SARS-CoV2 infection of human cells. Vaccine therapies are a valuable barrier to the worst effects of the virus and to its diffusion, but the need of purposed drugs is emerging as a core target of the fight against COVID19. In this respect, the repurposing of drugs has already led to discovery of drugs thought to reduce the effects of the cytokine storm, but still a drug targeting the spike protein, in the infection …


A Case Report On Causes Of Covid-19 Induced Psychosis And Treatments, Jennifer Pires, Steven Sarner May 2022

A Case Report On Causes Of Covid-19 Induced Psychosis And Treatments, Jennifer Pires, Steven Sarner

Rowan-Virtua Research Day

COVID-19 is a viral infection that is caused by an RNA virus in a subfamily of Coronaviridae named severe acute respiratory syndrome (SARS CoV 2). The family also includes severe acute respiratory syndrome coronavirus (SARS CoV) and middle east respiratory syndrome coronavirus (MERS CoV) which have previously been shown to cause respiratory symptoms and psychosis with immunoreactivity to IgG.


Computer Simulations And Network-Based Profiling Of Binding And Allosteric Interactions Of Sars-Cov-2 Spike Variant Complexes And The Host Receptor: Dissecting The Mechanistic Effects Of The Delta And Omicron Mutations, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan Apr 2022

Computer Simulations And Network-Based Profiling Of Binding And Allosteric Interactions Of Sars-Cov-2 Spike Variant Complexes And The Host Receptor: Dissecting The Mechanistic Effects Of The Delta And Omicron Mutations, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this study, we combine all-atom MD simulations and comprehensive mutational scanning of S-RBD complexes with the angiotensin-converting enzyme 2 (ACE2) host receptor in the native form as well as the S-RBD Delta and Omicron variants to (a) examine the differences in the dynamic signatures of the S-RBD complexes and (b) identify the critical binding hotspots and sensitivity of the mutational positions. We also examined the differences in allosteric interactions and communications in the S-RBD complexes for the Delta and Omicron variants. Through the perturbation-based scanning of the allosteric propensities of the SARS-CoV-2 S-RBD residues and dynamics-based network centrality and …


Allosteric Determinants Of The Sars-Cov-2 Spike Protein Binding With Nanobodies: Examining Mechanisms Of Mutational Escape And Sensitivity Of The Omicron Variant, Gennady M. Verkhivker Feb 2022

Allosteric Determinants Of The Sars-Cov-2 Spike Protein Binding With Nanobodies: Examining Mechanisms Of Mutational Escape And Sensitivity Of The Omicron Variant, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against the SARS-CoV-2 virus and resilience against mutational escape. In this study, we performed a comprehensive computational analysis of the SARS-CoV-2 spike trimer complexes with single nanobodies Nb6, VHH E, and complex with VHH E/VHH V nanobody combination. We combined coarse-grained and all-atom molecular simulations and collective dynamics analysis with binding free energy scanning, perturbation-response scanning, and network centrality analysis to examine mechanisms of nanobody-induced allosteric modulation and cooperativity in the SARS-CoV-2 spike trimer complexes with these nanobodies. By quantifying energetic and allosteric …


Conformational Flexibility And Local Frustration In The Functional States Of The Sars-Cov-2 Spike B.1.1.7 And B.1.351 Variants: Mutation-Induced Allosteric Modulation Mechanism Of Functional Dynamics And Protein Stability, Gennady M. Verkhivker Jan 2022

Conformational Flexibility And Local Frustration In The Functional States Of The Sars-Cov-2 Spike B.1.1.7 And B.1.351 Variants: Mutation-Induced Allosteric Modulation Mechanism Of Functional Dynamics And Protein Stability, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Structural and functional studies of the SARS-CoV-2 spike proteins have recently determined distinct functional states of the B.1.1.7 and B.1.351 spike variants, providing a molecular framework for understanding the mechanisms that link the effect of mutations with the enhanced virus infectivity and transmissibility. A detailed dynamic and energetic analysis of these variants was undertaken in the present work to quantify the effects of different mutations on functional conformational changes and stability of the SARS-CoV-2 spike protein. We employed the efficient and accurate coarse-grained (CG) simulations of multiple functional states of the D614G mutant, B.1.1.7 and B.1.351 spike variants to characterize …


Atomistic Simulations And In Silico Mutational Profiling Of Protein Stability And Binding In The Sars-Cov-2 Spike Protein Complexes With Nanobodies: Molecular Determinants Of Mutational Escape Mechanisms, Gennady M. Verkhivker, Steve Agajanian, Deniz Yasar Oztas, Grace Gupta Sep 2021

Atomistic Simulations And In Silico Mutational Profiling Of Protein Stability And Binding In The Sars-Cov-2 Spike Protein Complexes With Nanobodies: Molecular Determinants Of Mutational Escape Mechanisms, Gennady M. Verkhivker, Steve Agajanian, Deniz Yasar Oztas, Grace Gupta

Mathematics, Physics, and Computer Science Faculty Articles and Research

Structure-functional studies have recently revealed a spectrum of diverse high-affinity nanobodies with efficient neutralizing capacity against SARS-CoV-2 virus and resilience against mutational escape. In this study, we combine atomistic simulations with the ensemble-based mutational profiling of binding for the SARS-CoV-2 S-RBD complexes with a wide range of nanobodies to identify dynamic and binding affinity fingerprints and characterize the energetic determinants of nanobody-escaping mutations. Using an in silico mutational profiling approach for probing the protein stability and binding, we examine dynamics and energetics of the SARS-CoV-2 complexes with single nanobodies Nb6 and Nb20, VHH E, a pair combination VHH E + …


Suppression Of Dc-Sign And Gh Reveals Complex, Subset-Specific Mechanisms For Kshv Entry In Primary B Lymphocytes, Nancy Palmerin, Farizeh Aalam, Romina Nabiee, Murali Muniraju, Javier Gordon Ogembo, Jennifer Totonchy Jul 2021

Suppression Of Dc-Sign And Gh Reveals Complex, Subset-Specific Mechanisms For Kshv Entry In Primary B Lymphocytes, Nancy Palmerin, Farizeh Aalam, Romina Nabiee, Murali Muniraju, Javier Gordon Ogembo, Jennifer Totonchy

Pharmacy Faculty Articles and Research

Kaposi sarcoma-associated herpesvirus (KSHV) is the causative agent of multiple cancers in immunocompromised patients including two lymphoproliferative disorders associated with KSHV infection of B lymphocytes. Despite many years of research into the pathogenesis of KSHV associated diseases, basic questions related to KSHV molecular virology remain unresolved. One such unresolved question is the cellular receptors and viral glycoproteins needed for KSHV entry into primary B lymphocytes. In this study, we assess the contributions of KSHV glycoprotein H (gH) and the cellular receptor DC-SIGN to KSHV infection in tonsil-derived B lymphocytes. Our results show that (1) neither KSHV-gH nor DC-SIGN are essential …


Applied Molecular Dynamics: From Targeting Viral Helicases, To Understanding The Interactions Of Cucurbituril Complexes In Ionic Solutions, Bryan Raubenolt Dec 2020

Applied Molecular Dynamics: From Targeting Viral Helicases, To Understanding The Interactions Of Cucurbituril Complexes In Ionic Solutions, Bryan Raubenolt

University of New Orleans Theses and Dissertations

Molecular Dynamics simulations are a highly useful tool in helping understand the fundamental interactions present in a variety of chemical systems. The work discussed here illustrates it’s use in determining the conformational dynamics of the Zika and SARS-Cov-2 helicase in a physiological environment, largely in an effort to discover inhibitors capable of rendering the protein inert. Additionally, we show how it can be used to understand paradoxical trends in the anion-induced precipitation of Cucurbituril cavitands.

Viral helicases are motor proteins tasked with unwinding the viral dsRNA, a crucial step in preparing the strand to be translatable by host cells. By …


An Update Of The Virion Proteome Of Kaposi Sarcoma-Associated Herpesvirus, Ramina Nabiee, Basir Syed, Jesus Ramirez Castano, Rukhsana Lalani, Jennifer Totonchy Dec 2020

An Update Of The Virion Proteome Of Kaposi Sarcoma-Associated Herpesvirus, Ramina Nabiee, Basir Syed, Jesus Ramirez Castano, Rukhsana Lalani, Jennifer Totonchy

Pharmacy Faculty Articles and Research

The virion proteins of Kaposi sarcoma-associated herpesvirus (KSHV) were initially characterized in 2005 in two separate studies that combined the detection of 24 viral proteins and a few cellular components via LC-MS/MS or MALDI-TOF. Despite considerable advances in the sensitivity and specificity of mass spectrometry instrumentation in recent years, leading to significantly higher yields in detections, the KSHV virion proteome has not been revisited. In this study, we have re-examined the protein composition of purified KSHV virions via ultra-high resolution Qq time-of-flight mass spectrometry (UHR-QqTOF). Our results confirm the detection of all previously reported virion proteins, in addition to 17 …


Coevolution, Dynamics And Allostery Conspire In Shaping Cooperative Binding And Signal Transmission Of The Sars-Cov-2 Spike Protein With Human Angiotensin-Converting Enzyme 2, Gennady M. Verkhivker Nov 2020

Coevolution, Dynamics And Allostery Conspire In Shaping Cooperative Binding And Signal Transmission Of The Sars-Cov-2 Spike Protein With Human Angiotensin-Converting Enzyme 2, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Binding to the host receptor is a critical initial step for the coronavirus SARS-CoV-2 spike protein to enter into target cells and trigger virus transmission. A detailed dynamic and energetic view of the binding mechanisms underlying virus entry is not fully understood and the consensus around the molecular origins behind binding preferences of SARS-CoV-2 for binding with the angiotensin-converting enzyme 2 (ACE2) host receptor is yet to be established. In this work, we performed a comprehensive computational investigation in which sequence analysis and modeling of coevolutionary networks are combined with atomistic molecular simulations and comparative binding free energy analysis of …


Cytokine-Targeted Therapeutics For Kshv-Associated Disease, Nedaa Alomari, Jennifer Totonchy Sep 2020

Cytokine-Targeted Therapeutics For Kshv-Associated Disease, Nedaa Alomari, Jennifer Totonchy

Pharmacy Faculty Articles and Research

Kaposi’s sarcoma-associated herpesvirus (KSHV) also known as human herpesvirus 8 (HHV-8), is linked to several human malignancies including Kaposi sarcoma (KS), primary effusion lymphoma (PEL), multicentric Castleman’s disease (MCD) and recently KSHV inflammatory cytokine syndrome (KICS). As with other diseases that have a significant inflammatory component, current therapy for KSHV-associated disease is associated with significant off-target effects. However, recent advances in our understanding of the pathogenesis of KSHV have produced new insight into the use of cytokines as potential therapeutic targets. Better understanding of the role of cytokines during KSHV infection and tumorigenesis may lead to new preventive or therapeutic …


Randomized Clinical Trial Of The Effect Of Oral Supplementation With N-Acetyl Cysteine And Glycine On Biomarkers Of Oxidative Stress And Inflammation In People Living With Hiv (Plwh) From The Mash Cohort, Alhanoof Al-Ohaly Mar 2020

Randomized Clinical Trial Of The Effect Of Oral Supplementation With N-Acetyl Cysteine And Glycine On Biomarkers Of Oxidative Stress And Inflammation In People Living With Hiv (Plwh) From The Mash Cohort, Alhanoof Al-Ohaly

FIU Electronic Theses and Dissertations

HIV infection has been associated with glutathione (GSH) depletion, oxidatively damaged DNA, and inflammation. People living with HIV (PLWH) have subnormal levels of GSH and elevated levels of inflammation biomarkers such as C-Reactive Protein (CRP). Failure of the antioxidant enzymatic system increases oxidatively damaged DNA. The objective of this double-blinded randomized clinical trial was to supplement PLWH with a combination of N-acetylcysteine, a powerful antioxidant, and glycine, a precursor of GSH or placebo for three months to decrease oxidative stress and inflammation.

The trial recruited 30 PLWH from the Miami Adult Studies on HIV (MASH) cohort at the FIU Research …


Structural Biology Of The Enterovirus Replication-Linked 5'-Cloverleaf Rna And Associated Virus Proteins, Steven M. Pascal, Ravindranath Garimella, Meghan S. Warden, Komala Ponniah Jan 2020

Structural Biology Of The Enterovirus Replication-Linked 5'-Cloverleaf Rna And Associated Virus Proteins, Steven M. Pascal, Ravindranath Garimella, Meghan S. Warden, Komala Ponniah

Chemistry & Biochemistry Faculty Publications

Although enteroviruses are associated with a wide variety of diseases and conditions, their mode of replication is well conserved. Their genome is carried as a single, positive-sense RNA strand. At the 5′ end of the strand is an approximately 90-nucleotide self-complementary region called the 5′ cloverleaf, or the oriL. This noncoding region serves as a platform upon which host and virus proteins, including the 3B, 3C, and 3D virus proteins, assemble in order to initiate replication of a negative-sense RNA strand. The negative strand in turn serves as a template for synthesis of multiple positive-sense RNA strands. Building on structural …


Iiv-6 Inhibits Nf-Kappab Responses In Drosophila, Cara C. West, Florentina Rus, Ying Chen, Anni Kleino, Monique Gangloff, Don B. Gammon, Neal S. Silverman Jul 2019

Iiv-6 Inhibits Nf-Kappab Responses In Drosophila, Cara C. West, Florentina Rus, Ying Chen, Anni Kleino, Monique Gangloff, Don B. Gammon, Neal S. Silverman

Neal Silverman

The host immune response and virus-encoded immune evasion proteins pose constant, mutual selective pressure on each other. Virally encoded immune evasion proteins also indicate which host pathways must be inhibited to allow for viral replication. Here, we show that IIV-6 is capable of inhibiting the two Drosophila NF-kappaB signaling pathways, Imd and Toll. Antimicrobial peptide (AMP) gene induction downstream of either pathway is suppressed when cells infected with IIV-6 are also stimulated with Toll or Imd ligands. We find that cleavage of both Imd and Relish, as well as Relish nuclear translocation, three key points in Imd signal transduction, occur …


Control Of Antiviral Innate Immune Response By Protein Geranylgeranylation, Shigao Yang, Zhaozhao Jiang, Katherine A. Fitzgerald, Donghai Wang Jul 2019

Control Of Antiviral Innate Immune Response By Protein Geranylgeranylation, Shigao Yang, Zhaozhao Jiang, Katherine A. Fitzgerald, Donghai Wang

Katherine A. Fitzgerald

The mitochondrial antiviral signaling protein (MAVS) orchestrates host antiviral innate immune response to RNA virus infection. However, how MAVS signaling is controlled to eradicate virus while preventing self-destructive inflammation remains obscure. Here, we show that protein geranylgeranylation, a posttranslational lipid modification of proteins, limits MAVS-mediated immune signaling by targeting Rho family small guanosine triphosphatase Rac1 into the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) at the mitochondria-ER junction. Protein geranylgeranylation and subsequent palmitoylation promote Rac1 translocation into MAMs upon viral infection. MAM-localized Rac1 limits MAVS' interaction with E3 ligase Trim31 and hence inhibits MAVS ubiquitination, aggregation, and activation. Rac1 also facilitates …