Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Medicine and Health Sciences

Phaseolus Beans: Impact On Glycaemic Response And Chronic Disease Risk In Human Subjects, Andrea M. Hutchins, Donna M. Winham, Sharon V. Thompson Dec 2011

Phaseolus Beans: Impact On Glycaemic Response And Chronic Disease Risk In Human Subjects, Andrea M. Hutchins, Donna M. Winham, Sharon V. Thompson

Donna Winham

Consumption of Phaseolus vulgaris bean species such as pinto, black, navy or kidney may be beneficial in the prevention and treatment of chronic diseases. In particular, conditions that are promoted by increased glycaemic stress (hyperglycaemia and hyperinsulinaemia) including diabetes, CVD and cancer seem to be reduced in individuals who eat more of these beans. The present paper discusses the influence of P. vulgaris species on glycaemic response and the impact that relationship may have on the risk of developing diabetes, CVD and cancer.


Perceptions Of Flatulence From Bean Consumption Among Adults In 3 Feeding Studies, Donna M. Winham, Andrea M. Hutchins Nov 2011

Perceptions Of Flatulence From Bean Consumption Among Adults In 3 Feeding Studies, Donna M. Winham, Andrea M. Hutchins

Donna Winham

Background: Many consumers avoid eating beans because they believe legume consumption will cause excessive intestinal gas or flatulence. An increasing body of research and the 2010 Dietary Guidelines for Americans supports the benefits of a plant-based diet, and legumes specifically, in the reduction of chronic disease risks. The purpose of the current research was to investigate the perception of increased flatulence and gastrointestinal discomfort among participants who consumed a ½ cup of beans daily for 8 or 12 weeks. Methods: Participants in three studies to test the effects of beans on heart disease biomarkers completed the same weekly questionnaire to …


Spatiotemporal Effects Of A Controlled-Release Anti-Inflammatory Drug On The Cellular Dynamics Of Host Response, Tram T. Dang, Kaitlin M. Bratlie, Said R. Bogatyrev, Xiao Chen, Robert Langer, Daniel G. Anderson Jan 2011

Spatiotemporal Effects Of A Controlled-Release Anti-Inflammatory Drug On The Cellular Dynamics Of Host Response, Tram T. Dang, Kaitlin M. Bratlie, Said R. Bogatyrev, Xiao Chen, Robert Langer, Daniel G. Anderson

Kaitlin M. Bratlie

In general, biomaterials induce a non-specific host response when implanted in the body. This reaction has the potential to interfere with the function of the implanted materials. One method for controlling the host response is through local, controlled-release of anti-inflammatory agents. Herein, we investigate the spatial and temporal effects of an anti-inflammatory drug on the cellular dynamics of the innate immune response to subcutaneously implanted poly(lactic-co-glycolic) microparticles. Noninvasive fluorescence imaging was used to investigate the influence of dexamethasone drug loading and release kinetics on the local and systemic inhibition of inflammatory cellular activities. Temporal monitoring of host response showed that …


Automated Sequence- And Stereo-Specific Assignment Of Methyl-Labeled Proteins By Paramagnetic Relaxation And Methyl–Methyl Nuclear Overhauser Enhancement Spectroscopy, Vincenzo Venditti, Nicolas L. Fawzi, G. Marius Clore Jan 2011

Automated Sequence- And Stereo-Specific Assignment Of Methyl-Labeled Proteins By Paramagnetic Relaxation And Methyl–Methyl Nuclear Overhauser Enhancement Spectroscopy, Vincenzo Venditti, Nicolas L. Fawzi, G. Marius Clore

Vincenzo Venditti

Methyl-transverse relaxation optimized spectroscopy is rapidly becoming the preferred NMR technique for probing structure and dynamics of very large proteins up to ~1 MDa in molecular size. Data interpretation, however, necessitates assignment of methyl groups which still presents a very challenging and time-consuming process. Here we demonstrate that, in combination with a known 3D structure, paramagnetic relaxation enhancement (PRE), induced by nitroxide spin-labels incorporated at only a few surface-exposed engineered cysteines, provides fast, straightforward and robust access to methyl group resonance assignments, including stereoassignments for the methyl groups of leucine and valine. Neither prior assignments, including backbone assignments, for the …


A Structurally Driven Analysis Of Thiol Reactivity In Mammalian Albumins, Ottavia Spiga, Domenico Summa, Simone Cirri, Andrea Bernini, Vincenzo Venditti, Matteo De Chiara, Raffaella Priora, Simona Frosail, Antonios Margaritis, Danila Di Giuseppe, Paolo Di Simplicio, Neri Niccolai Jan 2011

A Structurally Driven Analysis Of Thiol Reactivity In Mammalian Albumins, Ottavia Spiga, Domenico Summa, Simone Cirri, Andrea Bernini, Vincenzo Venditti, Matteo De Chiara, Raffaella Priora, Simona Frosail, Antonios Margaritis, Danila Di Giuseppe, Paolo Di Simplicio, Neri Niccolai

Vincenzo Venditti

Understanding the structural basis of protein redox activity is still an open question. Hence, by using a structural genomics approach, different albumins have been chosen to correlate protein structural features with the corresponding reaction rates of thiol exchange between albumin and disulfide DTNB. Predicted structures of rat, porcine, and bovine albumins have been compared with the experimentally derived human albumin. High structural similarity among these four albumins can be observed, in spite of their markedly different reactivity with DTNB. Sequence alignments offered preliminary hints on the contributions of sequence-specific local environments modulating albumin reactivity. Molecular dynamics simulations performed on experimental …


Real-Time In Vivo Detection Of Biomaterial-Induced Reactive Oxygen Species, Minglin Ma, Wendy F. Liu, Kaitlin M. Bratlie, Tram Dang, Robert Langer, Daniel G. Anderson Jan 2011

Real-Time In Vivo Detection Of Biomaterial-Induced Reactive Oxygen Species, Minglin Ma, Wendy F. Liu, Kaitlin M. Bratlie, Tram Dang, Robert Langer, Daniel G. Anderson

Kaitlin M. Bratlie

The non-specific host response to implanted biomaterials is often a key challenge of medical device design. To evaluate biocompatibility, measuring the release of reactive oxygen species (ROS) produced by inflammatory cells in response to biomaterial surfaces is a well-established method. However, the detection of ROS in response to materials implanted in vivo has not yet been demonstrated. Here, we develop a bioluminescence whole animal imaging approach to observe ROS released in response to subcutaneously-implanted materials in live animals. We compared the real-time generation of ROS in response to two representative materials, polystyrene and alginate, over the course of 28 days. …