Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 31

Full-Text Articles in Medicine and Health Sciences

Adaptations Of Adipose Tissue Expandability In Gestation Are Associated With Maternal Glucose Metabolism, Raziel Rojas-Rodriguez Jul 2019

Adaptations Of Adipose Tissue Expandability In Gestation Are Associated With Maternal Glucose Metabolism, Raziel Rojas-Rodriguez

GSBS Dissertations and Theses

Pregnancy induces maternal metabolic adaptations including mild glucose intolerance and weight gain in order to support fetal development and lactation. Adipose tissue (AT) function in gestation is featured by reduced insulin sensitivity and fat mass accrual which partly accounts for the weight gain in pregnant women and adaptation of glucose metabolism. A common metabolic pregnancy complication is gestational diabetes mellitus (GDM), a disease characterized by impaired glucose tolerance with onset in gestation. However, the relationship between AT expandability and glucose metabolism in gestation is not well understood. The goal of this thesis was to investigate the adaptations of human AT ...


Inebriated Immunity: Alcohol Affects Innate Immune Signaling In The Gut-Liver-Brain Axis, Patrick P. Lowe Jul 2018

Inebriated Immunity: Alcohol Affects Innate Immune Signaling In The Gut-Liver-Brain Axis, Patrick P. Lowe

GSBS Dissertations and Theses

Alcohol is a commonly consumed beverage, a drug of abuse and an important molecule affecting nearly every organ-system in the body. This project seeks to investigate the interplay between alcohol’s effects on critical organ-systems making up gut-liver-brain axis.

Alcohol initially interacts with the gastrointestinal tract. Our research describes the alterations seen in intestinal microbiota following alcohol consumption in an acute-on-chronic model of alcoholic hepatitis and indicates that reducing intestinal bacteria using antibiotics protects from alcohol-induced intestinal cytokine expression, alcoholic liver disease and from inflammation in the brain. Alcohol-induced liver injury can occur due to direct hepatocyte metabolic dysregulation and ...


Adipocyte Mtorc1 Signaling Separately Regulates Metabolic Homeostasis And Adipose Tissue Mass, Independent Of Raggtpase Activity, Peter L. Lee Jul 2018

Adipocyte Mtorc1 Signaling Separately Regulates Metabolic Homeostasis And Adipose Tissue Mass, Independent Of Raggtpase Activity, Peter L. Lee

GSBS Dissertations and Theses

Metabolic disorders are commonly associated with obesity, a condition where excess caloric intake leads to massive adipose tissue (AT) expansion and eventual dysfunction. When adipose tissue loses its ability to store excess energy properly, lipids accumulate in non-adipose tissues such as liver, and muscle. This ectopic lipid deposition is a significant risk factor in the development of a collection of disorders described as metabolic syndrome. While metabolic syndrome is typically linked with obesity, patients who have an inability to develop adipose tissue depots (lipodystrophy) develop similar clinical outcomes. There is evidence that aberrant mTORC1 signaling may occur in both settings ...


Innate Immunity As Mediator Of Cell Death And Inflammation In Alcoholic Liver Disease, Arvin Iracheta-Vellve Nov 2017

Innate Immunity As Mediator Of Cell Death And Inflammation In Alcoholic Liver Disease, Arvin Iracheta-Vellve

GSBS Dissertations and Theses

Central driving forces in the pathogenesis of liver disease are hepatocyte death and immune cell-driven inflammation. The interplay between outcomes, stemming from these two major cell types, is present from the earliest ethanol exposure, and are both determinants in advanced stages of liver disease particularly in alcoholic liver disease (ALD). The complexities associated with advanced ALD are many and therapies are limited. Due to the liver’s role in ethanol metabolism and filtering gut-derived products, it is becoming increasingly clear that innate immunity plays a central role in triggering activation of cell death and inflammatory pathways in ALD. We identified ...


Intergenerational Effects Of Nicotine In An Animal Model Of Paternal Nicotine Exposure, Markus Parzival Vallaster Aug 2017

Intergenerational Effects Of Nicotine In An Animal Model Of Paternal Nicotine Exposure, Markus Parzival Vallaster

GSBS Dissertations and Theses

Environmental conditions imposed onto organisms during certain phases of their life cycles such as embryogenesis or puberty can not only impact the organisms’ own health, but also affect subsequent generations. The underlying mechanisms causing intergenerational phenotypes are not encoded in the genome, but the result of reversible epigenetic modifications. This work investigates in a mouse model the impact of paternal nicotine exposure on the next generation regarding addictive behavior modulation, metabolic changes, and molecular mechanisms. It provides evidence that male offspring from nicotine-exposed fathers (NIC offspring) is more resistant to lethal doses of nicotine. This phenotype is gender-specific and depends ...


Targeting Drug Resistance In Chronic Myeloid Leukemia: A Dissertation, Leyuan Ma Nov 2016

Targeting Drug Resistance In Chronic Myeloid Leukemia: A Dissertation, Leyuan Ma

GSBS Dissertations and Theses

Inhibiting BCR-ABL kinase activity with tyrosine kinase inhibitors (TKIs) has been the frontline therapy for CML. Resistance to TKIs frequently occurs, but the mechanisms remain elusive.

First, to uncover survival pathways involved in TKI resistance in CML, I conducted a genome-wide RNAi screen in human CML cells to identify genes governing cellular sensitivity to the first generation TKI called IM (Gleevec). I identified genes converging on and activating the MEK/ERK pathway through transcriptional up-regulation of PRKCH. Combining IM with a MEK inhibitor synergistically kills TKI-resistant CML cells and CML stem cells.

Next, I performed single cell RNA-seq to compare ...


Viral Proteases As Drug Targets And The Mechanisms Of Drug Resistance: A Dissertation, Kuan-Hung Lin Sep 2016

Viral Proteases As Drug Targets And The Mechanisms Of Drug Resistance: A Dissertation, Kuan-Hung Lin

GSBS Dissertations and Theses

Viral proteases have been shown to be effective targets of anti-viral therapies for human immunodeficiency virus (HIV) and hepatitis C virus (HCV). However, under the pressure of therapy including protease inhibitors, the virus evolves to select drug resistance mutations both in the protease and substrates. In my thesis study, I aimed to understand the mechanisms of how this protease−substrate co-evolution contributes to drug resistance. Currently, there are no approved drugs against dengue virus (DENV); I investigated substrate recognition by DENV protease and designed cyclic peptides as inhibitors targeting the prime site of dengue protease.

First, I used X-ray crystallography ...


Exploiting Dna Repair And Er Stress Response Pathways To Induce Apoptosis In Glioblastoma Multiforme: A Dissertation, Jessica L. Weatherbee Aug 2016

Exploiting Dna Repair And Er Stress Response Pathways To Induce Apoptosis In Glioblastoma Multiforme: A Dissertation, Jessica L. Weatherbee

GSBS Dissertations and Theses

Glioblastoma multiforme (GBM) is a deadly grade IV brain tumor characterized by a heterogeneous population of cells that are drug resistant, aggressive, and infiltrative. The current standard of care, which has not changed in over a decade, only provides GBM patients with 12-14 months survival post diagnosis. We asked if the addition of a novel endoplasmic reticulum (ER) stress inducing agent, JLK1486, to the standard chemotherapy, temozolomide (TMZ), which induces DNA double strand breaks (DSBs), would enhance TMZ’s efficacy. Because GBMs rely on the ER to mitigate their hypoxic environment and DNA repair to fix TMZ induced DSBs, we ...


Activation Of Mtorc1 Improves Cone Cell Metabolism And Extends Vision In Retinitis Pigmentosa Mice: A Dissertation, Aditya Venkatesh Apr 2016

Activation Of Mtorc1 Improves Cone Cell Metabolism And Extends Vision In Retinitis Pigmentosa Mice: A Dissertation, Aditya Venkatesh

GSBS Dissertations and Theses

Retinitis Pigmentosa (RP) is an inherited photoreceptor degenerative disease that leads to blindness and affects about 1 in 4000 people worldwide. The disease is predominantly caused by mutations in genes expressed exclusively in the night active rod photoreceptors; however, blindness results from the secondary loss of the day active cone photoreceptors, the mechanism of which remains elusive. Here, we show that the mammalian target of rapamycin complex 1 (mTORC1) is required to delay the progression of cone death during disease and that constitutive activation of mTORC1 is sufficient to maintain cone function and promote cone survival in RP. Activation of ...


The Mechanistic Role And Therapeutic Potential Of Microrna-122 In Alcoholic Liver Disease: A Dissertation, Abhishek Satishchandran Apr 2016

The Mechanistic Role And Therapeutic Potential Of Microrna-122 In Alcoholic Liver Disease: A Dissertation, Abhishek Satishchandran

GSBS Dissertations and Theses

Chronic alcohol use results in accelerated liver injury, leading to alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. However, due to the complex nature of this disease process, a central, druggable mechanism has remained elusive. microRNAs are potent post-transcriptional regulators of gene expression. A single miRNA has the ability to regulate hundreds of pathways simultaneously, defining cellular fate and function. microRNA-122 (miR-122), the most abundant miRNA in hepatocytes, has a demonstrated role as an tumor suppressor, regulator of hepatocyte metabolism, and hepatic differentiation.

In this dissertation I demonstrate the role of miR-122 on alcoholic liver disease (ALD) pathogenesis over four parts. In ...


Understanding Drug Resistance And Antibody Neutralization Escape In Antivirals: A Dissertation, Kristina L. Prachanronarong Apr 2016

Understanding Drug Resistance And Antibody Neutralization Escape In Antivirals: A Dissertation, Kristina L. Prachanronarong

GSBS Dissertations and Theses

Antiviral drug resistance is a major problem in the treatment of viral infections, including influenza and hepatitis C virus (HCV). Influenza neuraminidase (NA) is a viral sialidase on the surface of the influenza virion and a primary antiviral target in influenza. Two subtypes of NA predominate in humans, N1 and N2, but different patterns of drug resistance have emerged in each subtype. To provide a framework for understanding the structural basis of subtype specific drug resistance mutations in NA, we used molecular dynamics simulations to define dynamic substrate envelopes for NA to determine how different patterns of drug resistance have ...


Roles Of Protein Arginine Methyltransferase 7 And Jumonji Domain-Containing Protein 6 In Adipocyte Differentiation: A Dissertation, Yu-Jie Hu Oct 2015

Roles Of Protein Arginine Methyltransferase 7 And Jumonji Domain-Containing Protein 6 In Adipocyte Differentiation: A Dissertation, Yu-Jie Hu

GSBS Dissertations and Theses

Regulation of gene expression comprises a wide range of mechanisms that control the abundance of gene products in response to environmental and developmental changes. These biological processes can be modulated by posttranslational modifications including arginine methylation. Among the enzymes that catalyze the methylation, protein arginine methyltransferase 7 (PRMT7) is known to modify histones to repress gene expression. Jumonji domain-containing protein 6 (JMJD6) is a putative arginine demethylase that potentially antagonize PRMT7. However, the biological significance of these enzymes is not well understood. This thesis summarizes the investigation of both PRMT7 and JMJD6 in cell culture models for adipocyte differentiation. The ...


Regulation Of Metabolism By Hepatic Oxphos: A Dissertation, Thomas E. Akie Oct 2015

Regulation Of Metabolism By Hepatic Oxphos: A Dissertation, Thomas E. Akie

GSBS Dissertations and Theses

Non-alcoholic fatty liver disease (NAFLD) is an increasingly prevalent issue in the modern world, predisposing patients to serious pathology such as cirrhosis and hepatocellular carcinoma. Mitochondrial dysfunction, and in particular, diminished hepatic oxidative phosphorylation (OXPHOS) capacity, have been observed in NAFLD livers, which may participate in NAFLD pathogenesis.

To examine the role of OXPHOS in NAFLD, we generated a model of enhanced hepatic OXPHOS using mice with liver-specific transgenic expression of LRPPRC, a protein which activates mitochondrial transcription and augments OXPHOS capacity. When challenged with high-fat feeding, mice with enhanced hepatic OXPHOS were protected from the development of liver steatosis ...


Exploring The Role Of Fus Mutants From Stress Granule Incorporation To Nucleopathy In Amyotrophic Lateral Sclerosis: A Dissertation, Hae Kyung Ko Sep 2015

Exploring The Role Of Fus Mutants From Stress Granule Incorporation To Nucleopathy In Amyotrophic Lateral Sclerosis: A Dissertation, Hae Kyung Ko

GSBS Dissertations and Theses

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by preferential motor neuron death in the brain and spinal cord. The rapid disease progression results in death due to respiratory failure, typically within 3-5 years after disease onset. While ~90% of cases occur sporadically, remaining 10% of ALS cases show familial inheritance, and the number of genes linked to ALS has increased dramatically over the past decade.

FUS/TLS (Fused in Sarcoma/ Translocated to liposarcoma) is a nucleic acid binding protein that may regulate several cellular functions, including RNA splicing, transcription, DNA damage repair and microRNA biogenesis. More than ...


Investigating The Effects Of Mutant Fus On Stress Response In Amyotrophic Lateral Sclerosis: A Thesis, Laura J. Kaushansky Aug 2015

Investigating The Effects Of Mutant Fus On Stress Response In Amyotrophic Lateral Sclerosis: A Thesis, Laura J. Kaushansky

GSBS Dissertations and Theses

During stress, eukaryotes regulate protein synthesis in part through formation of cytoplasmic, non-membrane-bound complexes called stress granules (SGs). SGs transiently store signaling proteins and stalled translational complexes in response to stress stimuli (e.g. oxidative insult, DNA damage, temperature shifts and ER dysfunction). The functional outcome of SGs is proper translational regulation and signaling, allowing cells to overcome stress.

The fatal motor neuron disease Amyotrophic Lateral Sclerosis (ALS) develops in an age-related manner and is marked by progressive neuronal death, with cytoplasmic protein aggregation, excitotoxicity and increased oxidative stress as major hallmarks. Fused in Sarcoma/Translocated in Liposarcoma (FUS) is ...


Jun Kinases In Hematopoiesis, And Vascular Development And Function: A Dissertation, Kasmir Ramo Jul 2015

Jun Kinases In Hematopoiesis, And Vascular Development And Function: A Dissertation, Kasmir Ramo

GSBS Dissertations and Theses

Arterial occlusive diseases are major causes of morbidity and mortality in industrialized countries and represent a huge economic burden. The extent of the native collateral circulation is an important determinant of blood perfusion restoration and therefore the severity of tissue damage and functional impairment that ensues following arterial occlusion. Understanding the mechanisms responsible for collateral artery development may provide avenues for therapeutic intervention. Here, we identify a critical requirement for mixed lineage kinase (MLK) – cJun-NH2-terminal kinase (JNK) signaling in vascular morphogenesis and native collateral artery development. We demonstrate that Mlk2-/-Mlk3-/- mice or mice with compound JNK-deficiency in the vascular ...


Cathosis: Cathepsins In Particle-Induced Inflammatory Cell Death: A Dissertation, Gregory M. Orlowski May 2015

Cathosis: Cathepsins In Particle-Induced Inflammatory Cell Death: A Dissertation, Gregory M. Orlowski

GSBS Dissertations and Theses

Sterile particles underlie the pathogenesis of numerous inflammatory diseases. These diseases can often become chronic and debilitating. Moreover, they are common, and include silicosis (silica), asbestosis (asbestos), gout (monosodium urate), atherosclerosis (cholesterol crystals), and Alzeihmer’s disease (amyloid Aβ). Central to the pathology of these diseases is a repeating cycle of particle-induced cell death and inflammation. Macrophages are the key cellular mediators thought to drive this process, as they are especially sensitive to particle-induced cell death and they are also the dominant producers of the cytokine responsible for much of this inflammation, IL-1β. In response to cytokines or microbial cues ...


Function And Regulation Of The Α6 Integrins In Mammary Epithelial Biology And Breast Cancer: A Dissertation, Cheng Chang Feb 2015

Function And Regulation Of The Α6 Integrins In Mammary Epithelial Biology And Breast Cancer: A Dissertation, Cheng Chang

GSBS Dissertations and Theses

Integrins have the ability to impact major aspects of epithelial biology including adhesion, migration, invasion, signaling and differentiation, as well as the formation and progression of cancer (Hynes 2002; Srichai and Zent 2010; Anderson et al. 2014). This thesis focuses on how integrins are regulated and function in the context of mammary epithelial biology and breast cancer with a specific focus on the α6 integrin heterodimers (α6β1 and α6β4). These integrins function primarily as receptors for the laminin family of extracellular matrix (ECM) proteins and they have been implicated in mammary gland biology and breast cancer (Friedrichs et al. 1995 ...


Endothelial Driven Inflammation In Metabolic Disease: A Dissertation, Anouch Matevossian Feb 2015

Endothelial Driven Inflammation In Metabolic Disease: A Dissertation, Anouch Matevossian

GSBS Dissertations and Theses

Obesity has been on the rise over the last 30 years, reaching worldwide epidemic proportions. Obesity has been linked to multiple metabolic disorders and co-morbidities such as Type 2 Diabetes Mellitus (T2DM), cardiovascular disease, non-alcoholic steatohepatitis and various cancers. Furthermore, obesity is associated with a chronic state of low-grade inflammation in adipose tissue (AT), and it is thought that insulin resistance (IR) and T2DM is associated with the inflammatory state of AT.

Endothelial cells (ECs) mediate the migration of immune cells into underlying tissues during times of inflammation, including obesity- and cardiovascular disease-associated inflammation. Cytokines and chemoattractants released from inflamed ...


Calcium Dependent Regulatory Mechanism In Wolfram Syndrome: A Dissertation, Simin Lu Feb 2015

Calcium Dependent Regulatory Mechanism In Wolfram Syndrome: A Dissertation, Simin Lu

GSBS Dissertations and Theses

Wolfram syndrome is a genetic disorder characterized by diabetes and neurodegeneration. Two causative genes have been identified so far, WFS1 and WFS2, both encoding endoplasmic reticulum (ER) localized transmembrane proteins. Since WFS1 is involved in the ER stress pathway, Wolfram syndrome is considered an ER disease. Despite the underlying importance of ER dysfunction in Wolfram syndrome, the molecular mechanism linking ER to the death of β cells and neurons has not been elucidated.

The endoplasmic reticulum (ER) is an organelle that forms a network of enclosed sacs and tubes that connect the nuclear membrane and other organelles including Golgi and ...


Espfu, An Enterohemorrhagic E. Coli Secreted Effector, Hijacks Mammalian Actin Assembly Proteins By Molecular Mimicry And Repetition: A Dissertation, Yushuan (Cindy) Lai Apr 2014

Espfu, An Enterohemorrhagic E. Coli Secreted Effector, Hijacks Mammalian Actin Assembly Proteins By Molecular Mimicry And Repetition: A Dissertation, Yushuan (Cindy) Lai

GSBS Dissertations and Theses

Enterohemorrhagic E. coli (EHEC) is a major cause of food borne diarrheal illness worldwide. While disease symptoms are usually self-resolving and limited to severe gastroenteritis with bloody diarrhea, EHEC infection can lead to a life threatening complication known as Hemolytic Uremic Syndrome (HUS), which strikes children disproportionately and is the leading cause of kidney failure in children. Upon infection of gut epithelia, EHEC produces characteristic lesions called actin pedestals. These striking formations involve dramatic rearrangement of host cytoskeletal proteins. EHEC hijacks mammalian signaling pathways to cause destruction of microvilli and rebuilds the actin cytoskeleton underneath sites of bacterial attachment. Here ...


Fus/Tls In Stress Response - Implications For Amyotrophic Lateral Sclerosis: A Dissertation, Reddy Ranjith Kumar Sama Mar 2014

Fus/Tls In Stress Response - Implications For Amyotrophic Lateral Sclerosis: A Dissertation, Reddy Ranjith Kumar Sama

GSBS Dissertations and Theses

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease is a fatal neurodegenerative disease. ALS is typically adult onset and is characterized by rapidly progressive loss of both upper and lower motor neurons that leads to death usually within 3-5 years. About 90% of all the cases are sporadic with no family history while the remaining 10% are familial cases with mutations in several genes including SOD1, FUS/TLS, TDP43 and C9ORF72.

FUS/TLS (Fused in Sarcoma/Translocated in Liposarcoma or FUS) is an RNA/DNA binding protein that is involved in multiple cellular functions including DNA damage ...


From Neurodegeneration To Infertility And Back - Exploring Functions Of Two Genes: Armc4 And Tardbp: A Dissertation, Wei Cheng Jan 2014

From Neurodegeneration To Infertility And Back - Exploring Functions Of Two Genes: Armc4 And Tardbp: A Dissertation, Wei Cheng

GSBS Dissertations and Theses

Amyotrophic Lateral Sclerosis (ALS) is an adult-onset progressive neurodegenerative disease that causes degeneration in both upper and lower motor neurons. ALS progresses relentlessly after the onset of the disease, with most patients die within 3-5 years of diagnosis, largely due to respiratory failure. Since SOD1 became the first gene whose mutations were associated with ALS in 1993, more than 17 ALS causative genes have been identified. Among them, TAR DNA-binding protein (TARDBP) lies in the central of ALS pathology mechanism study, because TDP43 proteinopathy is observed not only in familial ALS cases carrying TARDBP mutations, but also in most of ...


Elucidating The Molecular Mechanism Of Cyld-Mediated Necrosis: A Dissertation, David M. Moquin May 2013

Elucidating The Molecular Mechanism Of Cyld-Mediated Necrosis: A Dissertation, David M. Moquin

GSBS Dissertations and Theses

TNFα-induced programmed necrosis is a caspase-independent cell death program that is contingent upon the formation of a multiprotein complex termed the necrosome. The association of two of the components of the necrosome, receptor interacting protein 1 (RIP1) and RIP3, is a critical and signature molecular event during necrosis. Within this complex, both RIP1 and RIP3 are phosphorylated which are consequential for transmission of the pro-necrotic signal. Namely, it has been demonstrated that RIP3 phosphorylation is required for binding to downstream substrates. Nevertheless, the regulatory mechanisms governing necrosome activation remain unclear. Since necrosis is implicated in a variety of different diseases ...


Local Macrophage Proliferation In Adipose Tissue Is A Characteristic Of Obesity-Associated Inflammation: A Dissertation, Shinya U. Amano Mar 2013

Local Macrophage Proliferation In Adipose Tissue Is A Characteristic Of Obesity-Associated Inflammation: A Dissertation, Shinya U. Amano

GSBS Dissertations and Theses

Obesity and diabetes are major public health problems facing the world today. Extending our understanding of adipose tissue biology, and how it changes in obesity, will hopefully better equip our society in dealing with the obesity epidemic. Macrophages and other immune cells accumulate in the adipose tissue in obesity and secrete cytokines that can promote insulin resistance. Adipose tissue macrophages (ATMs) are thought to originate from bone marrow-derived monocytes, which infiltrate the tissue from the circulation. Much work has been done to demonstrate that inhibition of monocyte recruitment to the adipose tissue can ameliorate insulin resistance. While monocytes can enter ...


Molecular Mechanisms Of Endocytosis: Trafficking And Functional Requirements For The Transferrin Receptor, Small Interfering Rnas And Dopamine Transporter: A Dissertation, Deanna M. Navaroli Apr 2012

Molecular Mechanisms Of Endocytosis: Trafficking And Functional Requirements For The Transferrin Receptor, Small Interfering Rnas And Dopamine Transporter: A Dissertation, Deanna M. Navaroli

GSBS Dissertations and Theses

Endocytosis is an essential function of eukaryotic cells, providing crucial nutrients and playing key roles in interactions of the plasma membrane with the environment. The classical view of the endocytic pathway, where vesicles from the plasma membrane fuse with a homogenous population of early endosomes from which cargo is sorted, has recently been challenged by the finding of multiple subpopulations of endosomes. These subpopulations vary in their content of phosphatidylinositol 3- phosphate (PI3P) and Rab binding proteins. The role of these endosomal subpopulations is unclear, as is the role of multiple PI3P effectors, which are ubiquitously expressed and highly conserved ...


Contribution Of Wfs1 To Pancreatic Beta Cell Survival And Adaptive Alterations In Wfs1 Deficiency: A Dissertation, Bryan M. O'Sullivan-Murphy Apr 2012

Contribution Of Wfs1 To Pancreatic Beta Cell Survival And Adaptive Alterations In Wfs1 Deficiency: A Dissertation, Bryan M. O'Sullivan-Murphy

GSBS Dissertations and Theses

Diabetes mellitus comprises a cohort of genetic and metabolic diseases which are characterized by the hallmark symptom of hyperglycemia. Diabetic subtypes are based on their pathogenetic origins: the most prevalent subtypes are the autoimmune-mediated type 1 diabetes mellitus (T1DM) and the metabolic disease of type 2 diabetes mellitus (T2DM). Genetic factors are major contributory aspects to diabetes development, particularly in T2DM where there is close to 80% concordance rates between monozygotic twins. However, the functional state of the pancreatic β cell is of paramount importance to the development of diabetes. Perturbations that lead to β cell dysfunction impair insulin production ...


Intestine Homeostasis And The Role Of Tumor Suppressor Gene 101 In Drosophila Melanogaster: A Dissertation, Madhurima Chatterjee Dec 2011

Intestine Homeostasis And The Role Of Tumor Suppressor Gene 101 In Drosophila Melanogaster: A Dissertation, Madhurima Chatterjee

GSBS Dissertations and Theses

Tissue homeostasis in the adult Drosophila melanogaster intestine is maintained by controlling the proper balance of stem cell self-renewal and differentiation. In the adult fly midgut, intestinal stem cells (ISCs) are the only dividing cells and their identity maintenance is crucial to the proper functioning of the fly gut. Various pathways such as Notch, JAK-STAT and Wingless are known to regulate ISC division and differentiation.

Here I used a pathogen feeding model to study conditions that accelerate ISC division and guide intestinal cell differentiation favoring enterocyte development. I also examined the role of Tumor Suppressor Gene 101 (TSG101) in ISC ...


Using Light To Observe And Control Cellular Function: Improving Bioluminescence Imaging And Photocontrol Of Rho Gtpase Activation States: A Dissertation, Katryn R. Harwood Sep 2011

Using Light To Observe And Control Cellular Function: Improving Bioluminescence Imaging And Photocontrol Of Rho Gtpase Activation States: A Dissertation, Katryn R. Harwood

GSBS Dissertations and Theses

The dynamic processes that occur at specific times and locations in cells and/or whole organisms during cellular division, migration, morphogenesis and development are critical. When these molecular events are not properly regulated, disease states can develop. Tools that can allow us to better understand the specific events that, when misregulated, result in disease development can also allow us to determine better ways to combat such misregulation. Specifically, tools that could allow us to better visualize cellular processes or those that allow us to control cellular functioning in a spatiotemporal manner could present great insight into the detailed inner workings ...


Regulation Of Contractility By Adenosine A1 And A2a Receptors In The Murine Heart: Role Of Protein Phosphatase 2a: A Dissertation, Eugene I. Tikh Jun 2006

Regulation Of Contractility By Adenosine A1 And A2a Receptors In The Murine Heart: Role Of Protein Phosphatase 2a: A Dissertation, Eugene I. Tikh

GSBS Dissertations and Theses

Adenosine is a nucleoside that plays an important role in the regulation of contractility in the heart. Adenosine receptors are G-protein coupled and those implicated in regulation of contractility are presumed to act via modulating the activity of adenylyl cyclase and cAMP content of cardiomyocytes. Adenosine A1 receptors (A1R) reduce the contractile response of the myocardium to β-adrenergic stimulation. This is known as anti adrenergic action. The A2A adenosine receptor (A2AR) has the opposite effect of increasing contractile responsiveness of the myocardium. The A2AR also appears to attenuate the effects of A ...