Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences

Dartmouth Scholarship

Transcription factors

Articles 1 - 30 of 32

Full-Text Articles in Medicine and Health Sciences

The Fatty Acid Regulator Fadr Influences The Expression Of The Virulence Cascade In The El Tor Biotype Of Vibrio Cholerae By Modulating The Levels Of Toxt Via Two Different Mechanisms, Gabriela Kovacikova, Wei Lin, Ronald K. Taylor, Karen Skorupski Jan 2017

The Fatty Acid Regulator Fadr Influences The Expression Of The Virulence Cascade In The El Tor Biotype Of Vibrio Cholerae By Modulating The Levels Of Toxt Via Two Different Mechanisms, Gabriela Kovacikova, Wei Lin, Ronald K. Taylor, Karen Skorupski

Dartmouth Scholarship

FadR is a master regulator of fatty acid (FA) metabolism that coordinates the pathways of FA degradation and biosynthesis in enteric bacteria. We show here that a ΔfadR mutation in the El Tor biotype of Vibrio cholerae prevents the expression of the virulence cascade by influencing both the transcription and the posttranslational regulation of the master virulence regulator ToxT. FadR is a transcriptional regulator that represses the expression of genes involved in FA degradation, activates the expression of genes involved in unsaturated FA (UFA) biosynthesis, and also activates the expression of two operons involved in saturated FA (SFA) biosynthesis. …


A Self-Lysis Pathway That Enhances The Virulence Of A Pathogenic Bacterium, Kirsty A. Mcfarland, Emily L. Dolben, Michele Leroux, Tracy K. Kambara, Kathryn Ramsey, Robin Kirkpatrick, Joseph Mougous, Deborah Hogan, Simon Dove Jul 2015

A Self-Lysis Pathway That Enhances The Virulence Of A Pathogenic Bacterium, Kirsty A. Mcfarland, Emily L. Dolben, Michele Leroux, Tracy K. Kambara, Kathryn Ramsey, Robin Kirkpatrick, Joseph Mougous, Deborah Hogan, Simon Dove

Dartmouth Scholarship

In mammalian cells, programmed cell death (PCD) plays important roles in development, in the removal of damaged cells, and in fighting bacterial infections. Although widespread among multicellular organisms, there are relatively few documented instances of PCD in bacteria. Here we describe a potential PCD pathway in Pseudomonas aeruginosa that enhances the ability of the bacterium to cause disease in a lung infection model. Activation of the system can occur in a subset of cells in response to DNA damage through cleavage of an essential transcription regulator we call AlpR. Cleavage of AlpR triggers a cell lysis program through de-repression of …


Proteolysis Of Virulence Regulator Toxr Is Associated With Entry Of Vibrio Cholerae Into A Dormant State, Salvador Almagro-Moreno, Tae K. Kim, Karen Skorupski, Ronald K. Taylor Apr 2015

Proteolysis Of Virulence Regulator Toxr Is Associated With Entry Of Vibrio Cholerae Into A Dormant State, Salvador Almagro-Moreno, Tae K. Kim, Karen Skorupski, Ronald K. Taylor

Dartmouth Scholarship

Vibrio cholerae O1 is a natural inhabitant of aquatic environments and causes the diarrheal disease, cholera. Two of its primary virulence regulators, TcpP and ToxR, are localized in the inner membrane. TcpP is encoded on the Vibrio Pathogenicity Island (VPI), a horizontally acquired mobile genetic element, and functions primarily in virulence gene regulation. TcpP has been shown to undergo regulated intramembrane proteolysis (RIP) in response to environmental conditions that are unfavorable for virulence gene expression. ToxR is encoded in the ancestral genome and is present in non-pathogenic strains of V. cholerae, indicating it has roles outside of the human …


Chip-Seq And In Vivo Transcriptome Analyses Of The Aspergillus Fumigatus Srebp Srba Reveals A New Regulator Of The Fungal Hypoxia Response And Virulence, Dawoon Chung, Bridget M. Barker, Charles C. Carey, Brittney Merriman Nov 2014

Chip-Seq And In Vivo Transcriptome Analyses Of The Aspergillus Fumigatus Srebp Srba Reveals A New Regulator Of The Fungal Hypoxia Response And Virulence, Dawoon Chung, Bridget M. Barker, Charles C. Carey, Brittney Merriman

Dartmouth Scholarship

The Aspergillus fumigatus sterol regulatory element binding protein (SREBP) SrbA belongs to the basic Helix-Loop-Helix (bHLH) family of transcription factors and is crucial for antifungal drug resistance and virulence. The latter phenotype is especially striking, as loss of SrbA results in complete loss of virulence in murine models of invasive pulmonary aspergillosis (IPA). How fungal SREBPs mediate fungal virulence is unknown, though it has been suggested that lack of growth in hypoxic conditions accounts for the attenuated virulence. To further understand the role of SrbA in fungal infection site pathobiology, chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) was …


Contribution Of Teg49 Small Rna In The 5′ Upstream Transcriptional Region Of Sara To Virulence In Staphylococcus Aureus, Samin Kim, Dindo Reyes, Marie Beaume, Patrice Francois, Ambrose Cheung Oct 2014

Contribution Of Teg49 Small Rna In The 5′ Upstream Transcriptional Region Of Sara To Virulence In Staphylococcus Aureus, Samin Kim, Dindo Reyes, Marie Beaume, Patrice Francois, Ambrose Cheung

Dartmouth Scholarship

High-throughput RNA sequencing technology has found the 5' untranslated region of sarA to contain two putative small RNAs (sRNAs), designated teg49 and teg48. Northern blot analysis disclosed that teg49 and teg48 were detectable within the P3-P1 and P1 sarA promoter regions, respectively. Focusing on teg49, we found that this sRNA, consisting of 196 nucleotides, is transcribed in the same direction as the sarA P3 transcript. The expression of both P3 and teg49 transcripts is dependent on sigB and cshA, which encodes a DEAD box RNA helicase. Within the sRNA teg49, there are two putative hairpin-loop structures, HP1 and HP2. Transversion …


Role Of Adaptor Trfa And Clppc In Controlling Levels Of Ssra-Tagged Proteins And Antitoxins In Staphylococcus Aureus, Niles P. Donegan, Jonathan S. Marvin, Ambrose L. Cheung Sep 2014

Role Of Adaptor Trfa And Clppc In Controlling Levels Of Ssra-Tagged Proteins And Antitoxins In Staphylococcus Aureus, Niles P. Donegan, Jonathan S. Marvin, Ambrose L. Cheung

Dartmouth Scholarship

Staphylococcus aureus responds to changing extracellular environments in part by adjusting its proteome through alterations of transcriptional priorities and selective degradation of the preexisting pool of proteins. In Bacillus subtilis, the proteolytic adaptor protein MecA has been shown to play a role in assisting with the proteolytic degradation of proteins involved in competence and the oxidative stress response. However, the targets of TrfA, the MecA homolog in S. aureus, have not been well characterized. In this work, we investigated how TrfA assists chaperones and proteases to regulate the proteolysis of several classes of proteins in S. aureus. …


Transcription Factor Binding Profiles Reveal Cyclic Expression Of Human Protein-Coding Genes And Non-Coding Rnas, Chao Cheng, Matthew Ung, Gavin D. Grant, Michael L. Whitfield Jul 2013

Transcription Factor Binding Profiles Reveal Cyclic Expression Of Human Protein-Coding Genes And Non-Coding Rnas, Chao Cheng, Matthew Ung, Gavin D. Grant, Michael L. Whitfield

Dartmouth Scholarship

Cell cycle is a complex and highly supervised process that must proceed with regulatory precision to achieve successful cellular division. Despite the wide application, microarray time course experiments have several limitations in identifying cell cycle genes. We thus propose a computational model to predict human cell cycle genes based on transcription factor (TF) binding and regulatory motif information in their promoters. We utilize ENCODE ChIP-seq data and motif information as predictors to discriminate cell cycle against non-cell cycle genes. Our results show that both the trans- TF features and the cis- motif features are predictive of cell cycle genes, and …


Id4 Deficiency Attenuates Prostate Development And Promotes Pin-Like Lesions By Regulating Androgen Receptor Activity And Expression Of Nkx3.1 And Pten, Pankaj Sharma, Ashley Knowell, Swathi Chinaranagari, Shravan Komaragiri, Peri Nagappan, Divya Patel, Mathew C. Havrda, Jaideep Chaudhary Jun 2013

Id4 Deficiency Attenuates Prostate Development And Promotes Pin-Like Lesions By Regulating Androgen Receptor Activity And Expression Of Nkx3.1 And Pten, Pankaj Sharma, Ashley Knowell, Swathi Chinaranagari, Shravan Komaragiri, Peri Nagappan, Divya Patel, Mathew C. Havrda, Jaideep Chaudhary

Dartmouth Scholarship

Background: Inhibitor of differentiation 4 (Id4), a member of the helix-loop-helix family of transcriptional regulators has emerged as a tumor suppressor in prostate cancer. Id4 is expressed in the normal prostate where its expression is also regulated by androgens. In this study we investigated the effect of loss of Id4 (Id4-/-) on adult prostate morphology. Methods: Histological analysis was performed on prostates from 6-8 weeks old Id4-/-, Id4+/- and Id4+/+ mice. Expression of Id1, Sox9, Myc, androgen receptor, Akt, p-Akt, Pten and Nkx3.1 was investigated by immunohistochemistry. Androgen receptor binding on NKX3.1 promoter was studied by chromatin immuno-precipitation. Id4 was …


Carhsp1 Is Required For Effective Tumor Necrosis Factor Alpha Mrna Stabilization And Localizes To Processing Bodies And Exosomes, Jason R. Pfeiffer, Bethany L. Mcavoy, Ryan E. Fecteau, Kristen M. Deleault, Seth A. Brooks Nov 2010

Carhsp1 Is Required For Effective Tumor Necrosis Factor Alpha Mrna Stabilization And Localizes To Processing Bodies And Exosomes, Jason R. Pfeiffer, Bethany L. Mcavoy, Ryan E. Fecteau, Kristen M. Deleault, Seth A. Brooks

Dartmouth Scholarship

Tumor necrosis factor alpha (TNF-α) is a critical mediator of inflammation, and its production is tightly regulated, with control points operating at nearly every step of its biosynthesis. We sought to identify uncharacterized TNF-α 3' untranslated region (3'UTR)-interacting proteins utilizing a novel screen, termed the RNA capture assay. We identified CARHSP1, a cold-shock domain-containing protein. Knockdown of CARHSP1 inhibits TNF-α protein production in lipopolysaccharide (LPS)-stimulated cells and reduces the level of TNF-α mRNA in both resting and LPS-stimulated cells. mRNA stability assays demonstrate that CARHSP1 knockdown decreases TNF-α mRNA stability from a half-life (t(1/2)) of 49 min to a t(1/2) …


Deltanp63 Transcriptionally Regulates Atm To Control P53 Serine-15 Phosphorylation., Ashley L. Craig, Jitka Holcakova, Lee E. Finlan, Marta Nekulova, Roman Hrstka, Nuri Gueven, James Direnzo, Graeme Smith, Ted R. Hupp, Borivoj Vojtesek Jul 2010

Deltanp63 Transcriptionally Regulates Atm To Control P53 Serine-15 Phosphorylation., Ashley L. Craig, Jitka Holcakova, Lee E. Finlan, Marta Nekulova, Roman Hrstka, Nuri Gueven, James Direnzo, Graeme Smith, Ted R. Hupp, Borivoj Vojtesek

Dartmouth Scholarship

Background: ΔNp63α is an epithelial progenitor cell marker that maintains epidermal stem cell self-renewal capacity. Previous studies revealed that UV-dam age induced p53 phosphorylation is confined to ΔNp63α-positive cells in the basal layer of human epithelium. Results: We now report that phosphorylatio n of the p53 tumour suppressor is po sitively regulated by ΔNp63α in immortalised human keratinocytes. ΔNp63α depletion by RNAi reduces steady-state ATM mRNA and protein levels, and attenuates p53 Serine-15 phosphorylation. Conversely, ectopic expression of ΔNp63α in p63-null tumour cells stimulates ATM transcription and p53 Seri ne-15 phosphorylation. We show that AT M is a …


Structure Of Vibrio Cholerae Toxt Reveals A Mechanism For Fatty Acid Regulation Of Virulence Genes, Michael J. Lowden, Karen Skorupski, Maria Pellegrini, Michael G. Chiorazzo, Ronald K. Taylor, F. Jon Kull Feb 2010

Structure Of Vibrio Cholerae Toxt Reveals A Mechanism For Fatty Acid Regulation Of Virulence Genes, Michael J. Lowden, Karen Skorupski, Maria Pellegrini, Michael G. Chiorazzo, Ronald K. Taylor, F. Jon Kull

Dartmouth Scholarship

Cholera is an acute intestinal infection caused by the bacterium Vibrio cholerae. In order for V. cholerae to cause disease, it must produce two virulence factors, the toxin-coregulated pilus (TCP) and cholera toxin (CT), whose expression is controlled by a transcriptional cascade culminating with the expression of the AraC-family regulator, ToxT. We have solved the 1.9 A resolution crystal structure of ToxT, which reveals folds in the N- and C-terminal domains that share a number of features in common with AraC, MarA, and Rob as well as the unexpected presence of a buried 16-carbon fatty acid, cis-palmitoleate. The finding that …


Sarz Promotes The Expression Of Virulence Factors And Represses Biofilm Formation By Modulating Sara And Agr In Staphylococcus Aureus, Sandeep Tamber, Ambrose L. Cheung Oct 2009

Sarz Promotes The Expression Of Virulence Factors And Represses Biofilm Formation By Modulating Sara And Agr In Staphylococcus Aureus, Sandeep Tamber, Ambrose L. Cheung

Dartmouth Scholarship

Staphylococcus aureus is a remarkably adaptable organism capable of multiple modes of growth in the human host, as a part of the normal flora, as a pathogen, or as a biofilm. Many of the regulatory pathways governing these modes of growth are centered on the activities of two regulatory molecules, the DNA binding protein SarA and the regulatory RNAIII effector molecule of the agr system. Here, we describe the modulation of these regulators and their downstream target genes by SarZ, a member of the SarA/MarR family of transcriptional regulators. Transcriptional and phenotypic analyses of a sarZ mutant demonstrated that the …


Regulation Of The Mazef Toxin-Antitoxin Module In Staphylococcus Aureus And Its Impact On Sigb Expression, Niles P. Donegan, Ambrose L. Cheung Apr 2009

Regulation Of The Mazef Toxin-Antitoxin Module In Staphylococcus Aureus And Its Impact On Sigb Expression, Niles P. Donegan, Ambrose L. Cheung

Dartmouth Scholarship

In Staphylococcus aureus, the sigB operon codes for the alternative sigma factor σBand its regulators that enable the bacteria to rapidly respond to environmental stresses via redirection of transcriptional priorities. However, a full model of σBregulation in S. aureus has not yet emerged. Earlier data has suggested that mazEF, a toxin-antitoxin (TA) module immediately upstream of the sigB operon, was transcribed with the sigB operon. Here we demonstrate that the promoter PmazE upstream of mazEF is essential for full σB activity and that instead of utilizing autorepression typical of TA systems, sigB …


Genetic Mapping Of Secretion And Functional Determinants Of The Vibrio Cholerae Tcpf Colonization Factor, Shelly J. Krebs, Thomas J. Kirn, Ronald K. Taylor Mar 2009

Genetic Mapping Of Secretion And Functional Determinants Of The Vibrio Cholerae Tcpf Colonization Factor, Shelly J. Krebs, Thomas J. Kirn, Ronald K. Taylor

Dartmouth Scholarship

Colonization of the human small intestine by Vibrio cholerae requires the type IV toxin-coregulated pilus (TCP). TcpF, which is encoded within the tcp operon, is secreted from the bacterial cell by the TCP apparatus and is also essential for colonization. Bacteria lacking tcpF are deficient in colonization, and anti-TcpF antibodies are protective in the infant mouse cholera model. In order to elucidate the regions of the protein that are required for secretion through the TCP apparatus and for its function in colonization, random mutagenesis of tcpF was performed. Analysis of these mutants suggests that multiple regions throughout the protein influence …


Paracrine Sonic Hedgehog Signalling By Prostate Cancer Cells Induces Osteoblast Differentiation, Samantha M Zunich, Taneka Douglas, Maria Valdovinos, Tiffany Chang Mar 2009

Paracrine Sonic Hedgehog Signalling By Prostate Cancer Cells Induces Osteoblast Differentiation, Samantha M Zunich, Taneka Douglas, Maria Valdovinos, Tiffany Chang

Dartmouth Scholarship

Sonic hedgehog (Shh) and components of its signalling pathway have been identified in human prostate carcinoma and increased levels of their expression appear to correlate with disease progression and metastasis. The mechanism through which Shh signalling could promote metastasis in bone, the most common site for prostate carcinoma metastasis, has not yet been investigated. The present study determined the effect of Shh signalling between prostate cancer cells and pre-osteoblasts on osteoblast differentiation, a requisite process for new bone formation that characterizes prostate carcinoma metastasis.


Identification Of Two Gene Clusters And A Transcriptional Regulator Required For Pseudomonas Aeruginosa Glycine Betaine Catabolism, Matthew J. Wargo, Benjamin S. Szwergold, Deborah A. Hogan Oct 2008

Identification Of Two Gene Clusters And A Transcriptional Regulator Required For Pseudomonas Aeruginosa Glycine Betaine Catabolism, Matthew J. Wargo, Benjamin S. Szwergold, Deborah A. Hogan

Dartmouth Scholarship

Glycine betaine (GB), which occurs freely in the environment and is an intermediate in the catabolism of choline and carnitine, can serve as a sole source of carbon or nitrogen in Pseudomonas aeruginosa. Twelve mutants defective in growth on GB as the sole carbon source were identified through a genetic screen of a nonredundant PA14 transposon mutant library. Further growth experiments showed that strains with mutations in two genes, gbcA (PA5410) and gbcB (PA5411), were capable of growth on dimethylglycine (DMG), a catabolic product of GB, but not on GB itself. Subsequent nuclear magnetic resonance (NMR) experiments with 1,2-(13)C-labeled choline …


A Serratia Marcescens Oxyr Homolog Mediates Surface Attachment And Biofilm Formation, Robert M. Q. Shanks, Nicholas A. Stella, Eric J. Kalivoda, Megan R. Doe Aug 2007

A Serratia Marcescens Oxyr Homolog Mediates Surface Attachment And Biofilm Formation, Robert M. Q. Shanks, Nicholas A. Stella, Eric J. Kalivoda, Megan R. Doe

Dartmouth Scholarship

OxyR is a conserved bacterial transcription factor with a regulatory role in oxidative stress response. From a genetic screen for genes that modulate biofilm formation in the opportunistic pathogen Serratia marcescens, mutations in an oxyR homolog and predicted fimbria structural genes were identified. S. marcescens oxyR mutants were severely impaired in biofilm formation, in contrast to the hyperbiofilm phenotype exhibited by oxyR mutants of Escherichia coli and Burkholderia pseudomallei. Further analysis revealed that OxyR plays a role in the primary attachment of cells to a surface. Similar to what is observed in other bacterial species, S. marcescens OxyR …


Innate Antiviral Response Targets Hiv-1 Release By The Induction Of Ubiquitin-Like Protein Isg15, Atsushi Okumura, Gengshi Lu, Ian Pitha-Rowe, Paula M. Pitha Jan 2006

Innate Antiviral Response Targets Hiv-1 Release By The Induction Of Ubiquitin-Like Protein Isg15, Atsushi Okumura, Gengshi Lu, Ian Pitha-Rowe, Paula M. Pitha

Dartmouth Scholarship

The goal of this study was to elucidate the molecular mechanism by which type I IFN inhibits assembly and release of HIV-1 virions. Our study revealed that the IFN-induced ubiquitin-like protein ISG15 mimics the IFN effect and inhibits release of HIV-1 virions without having any effect on the synthesis of HIV-1 proteins in the cells. ISG15 expression specifically inhibited ubiquitination of Gag and Tsg101 and disrupted the interaction of the Gag L domain with Tsg101, but conjugation of ISG15 to Gag or Tsg101 was not detected. The inhibition of Gag-Tsg101 interaction was also detected in HIV-1 infected, IFN-treated cells. Elimination …


The Caenorhabditis Elegans Heterochronic Regulator Lin-14 Is A Novel Transcription Factor That Controls The Developmental Timing Of Transcription From The Insulin/Insulin-Like Growth Factor Gene Ins-33 By Direct Dna Binding, Marta Hristova, Darcy Birse, Yang Hong, Victor Ambros Dec 2005

The Caenorhabditis Elegans Heterochronic Regulator Lin-14 Is A Novel Transcription Factor That Controls The Developmental Timing Of Transcription From The Insulin/Insulin-Like Growth Factor Gene Ins-33 By Direct Dna Binding, Marta Hristova, Darcy Birse, Yang Hong, Victor Ambros

Dartmouth Scholarship

A temporal gradient of the novel nuclear protein LIN-14 specifies the timing and sequence of stage-specific developmental events in Caenorhabditis elegans. The profound effects of lin-14 mutations on worm development suggest that LIN-14 directly or indirectly regulates stage-specific gene expression. We show that LIN-14 can associate with chromatin in vivo and has in vitro DNA binding activity. A bacterially expressed C-terminal domain of LIN-14 was used to select DNA sequences that contain a putative consensus binding site from a pool of randomized double-stranded oligonucleotides. To identify candidates for genes directly regulated by lin-14, we employed DNA microarray hybridization to compare …


Tcpf Is A Soluble Colonization Factor And Protective Antigen Secreted By El Tor And Classical O1 And O139 Vibrio Cholerae Serogroups, Thomas J. Kirn, Ronald K. Taylor Aug 2005

Tcpf Is A Soluble Colonization Factor And Protective Antigen Secreted By El Tor And Classical O1 And O139 Vibrio Cholerae Serogroups, Thomas J. Kirn, Ronald K. Taylor

Dartmouth Scholarship

Vibrio cholerae causes diarrhea by colonizing the human small bowel and intoxicating epithelial cells. Colonization is a required step in pathogenesis, and strains defective for colonization are significantly attenuated. The best-characterized V. cholerae colonization factor is the toxin-coregulated pilus (TCP). It has been demonstrated that TCP is required for V. cholerae colonization in both humans and mice. TCP enhances bacterial interactions that allow microcolony formation and thereby promotes survival in the intestine. We have recently discovered that the TCP biogenesis apparatus also serves as a secretion system, mediating the terminal step in the extracellular secretion pathway of TcpF. TcpF was …


Erythroid Cell-Specific Α-Globin Gene Regulation By The Cp2 Transcription Factor Family, Ho C. Kang, Jui Hyung Chae, Yeon H. Lee, Mi-Ae Park, June Ho Shin, Sung-Hyun Kim, Sang-Kyu Ye, Yoon Shin Cho, Steven Fiering, Chul Geun Kim Jul 2005

Erythroid Cell-Specific Α-Globin Gene Regulation By The Cp2 Transcription Factor Family, Ho C. Kang, Jui Hyung Chae, Yeon H. Lee, Mi-Ae Park, June Ho Shin, Sung-Hyun Kim, Sang-Kyu Ye, Yoon Shin Cho, Steven Fiering, Chul Geun Kim

Dartmouth Scholarship

We previously demonstrated that ubiquitously expressed CP2c exerts potent erythroid-specific transactivation of alpha-globin through an unknown mechanism. This mechanism is reported here to involve specific CP2 splice variants and protein inhibitor of activated STAT1 (PIAS1). We identify a novel murine splice isoform of CP2, CP2b, which is identical to CP2a except that it has an additional 36 amino acids encoded by an extra exon. CP2b has an erythroid cell-specific transcriptional activation domain, which requires the extra exon and can form heteromeric complexes with other CP2 isoforms, but lacks the DNA binding activity found in CP2a and CP2c. Transcriptional activation of …


Sadb Is Required For The Transition From Reversible To Irreversible Attachment During Biofilm Formation By Pseudomonas Aeruginosa Pa14, Nicky C. Caiazza, George A. O'Toole Jul 2004

Sadb Is Required For The Transition From Reversible To Irreversible Attachment During Biofilm Formation By Pseudomonas Aeruginosa Pa14, Nicky C. Caiazza, George A. O'Toole

Dartmouth Scholarship

Current models of biofilm formation by Pseudomonas aeruginosa propose that (i) planktonic cells become surface associated in a monolayer, (ii) surface-associated cells form microcolonies by clonal growth and/or aggregation, (iii) microcolonies transition to a mature biofilm comprised of exopolysaccharide-encased macrocolonies, and (iv) cells exit the mature biofilm and reenter the planktonic state. Here we report a new class of P. aeruginosa biofilm mutant that defines the transition from reversible to irreversible attachment and is thus required for monolayer formation. The transposon insertion carried by the sadB199 mutant was mapped to open reading frame PA5346 of P. aeruginosa PA14 and encodes …


The Virulence Activator Apha Links Quorum Sensing To Pathogenesis And Physiology In Vibrio Cholerae By Repressing The Expression Of A Penicillin Amidase Gene On The Small Chromosome, Gabriela Kovacikova, Wei Lin, Karen Skorupski Aug 2003

The Virulence Activator Apha Links Quorum Sensing To Pathogenesis And Physiology In Vibrio Cholerae By Repressing The Expression Of A Penicillin Amidase Gene On The Small Chromosome, Gabriela Kovacikova, Wei Lin, Karen Skorupski

Dartmouth Scholarship

Activation of the tcpPH promoter on the Vibrio pathogenicity island by AphA and AphB initiates the Vibrio cholerae virulence cascade and is regulated by quorum sensing through the repressive action of HapR on aphA expression. To further understand how the chromosomally encoded AphA protein activates tcpPH expression, site-directed mutagenesis was used to identify the base pairs critical for AphA binding and transcriptional activation. This analysis revealed a region of partial dyad symmetry, TATGCA-N6-TNCNNA, that is important for both of these activities. Searching the V. cholerae genome for this binding site permitted the identification of a second one upstream of a …


Crystal Structure Of The Sars Protein From Staphylococcus Aureus, Ronggui Li, Adhar C. Manna, Shaodong Dai, Ambrose L. Cheung, Gongyi Zhang Jul 2003

Crystal Structure Of The Sars Protein From Staphylococcus Aureus, Ronggui Li, Adhar C. Manna, Shaodong Dai, Ambrose L. Cheung, Gongyi Zhang

Dartmouth Scholarship

The expression of virulence determinants in Staphylococcus aureus is controlled by global regulatory loci (e.g., sarA and agr). One of these determinants, protein A (spa), is activated by sarS, which encodes a 250-residue DNA-binding protein. Genetic analysis indicated that the agr locus likely mediates spa repression by suppressing the transcription of sarS. Contrary to SarA and SarR, which require homodimer formation for proper function, SarS is unusual within the SarA protein family in that it contains two homologous halves, with each half sharing sequence similarity to SarA and SarR. Here we report the 2.2 Å …


Rhythmic Binding Of A White Collar-Containing Complex To The Frequency Promoter Is Inhibited By Frequency, Allan C. Froehlich, Jennifer J. Loros, Jay C. Dunlap May 2003

Rhythmic Binding Of A White Collar-Containing Complex To The Frequency Promoter Is Inhibited By Frequency, Allan C. Froehlich, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

The biological clock of Neurospora crassa includes interconnected transcriptional and translational feedback loops that cause both the transcript and protein encoded by the frequency gene (frq) to undergo the robust daily oscillations in abundance, which are essential for clock function. To understand better the mechanism generating rhythmic frq transcript, reporter constructs were used to show that the oscillation in frq message is transcriptionally regulated, and a single cis-acting element in the frq promoter, the Clock Box (C box), is both necessary and sufficient for this rhythmic transcription. Nuclear protein extracts used in binding assays revealed that a White Collar (WC)-1- …


Mechanism Of Toxt-Dependent Transcriptional Activation At The Vibrio Cholerae Tcpa Promoter, Robin R. Hulbert, Ronald K. Taylor Oct 2002

Mechanism Of Toxt-Dependent Transcriptional Activation At The Vibrio Cholerae Tcpa Promoter, Robin R. Hulbert, Ronald K. Taylor

Dartmouth Scholarship

The AraC homolog ToxT coordinately regulates virulence gene expression in Vibrio cholerae. ToxT is required for transcriptional activation of the genes encoding cholera toxin and the toxin coregulated pilus, among others. In this work we focused on the interaction of ToxT with the tcpA promoter and investigated the mechanism of ToxT-dependent transcriptional activation at tcpA. Deletion analysis showed that a region from −95 to +2 was sufficient for ToxT binding and activation, both of which were simultaneously lost when the deletion was extended to −63. A collection of point mutations generated by error-prone PCR revealed two small regions required …


Sart, A Repressor Of Α-Hemolysin In Staphylococcus Aureus, Katherine A. Schmidt, Adhar C. Manna, Steven Gill, Ambrose L. Cheung Aug 2001

Sart, A Repressor Of Α-Hemolysin In Staphylococcus Aureus, Katherine A. Schmidt, Adhar C. Manna, Steven Gill, Ambrose L. Cheung

Dartmouth Scholarship

In searching the Staphylococcus aureus genome, we found several homologs to SarA. One of these genes, sarT, codes for a basic protein with 118 residues and a predicted molecular size of 16,096 Da. Northern blot analysis revealed that the expression of sarT was repressed by sarA and agr. An insertion sarT mutant generated in S. aureus RN6390 and 8325-4 backgrounds revealed minimal effect on the expression of sarR and sarA. The RNAIII level was notably increased in the sarT mutant, particularly in postexponential-phase cells, while the augmentative effect on RNAII was less. SarT repressed the expression of alpha-hemolysin, as determined …


Circadian Clock-Specific Roles For The Light Response Protein White Collar-2, Michael A. Collett, Jay C. Dunlap, Jennifer J. Loros Apr 2001

Circadian Clock-Specific Roles For The Light Response Protein White Collar-2, Michael A. Collett, Jay C. Dunlap, Jennifer J. Loros

Dartmouth Scholarship

To understand the role of white collar-2 in theNeurospora circadian clock, we examined alleles ofwc-2 thought to encode partially functional proteins. We found that wc-2 allele ER24 contained a conservative mutation in the zinc finger. This mutation results in reduced levels of circadian rhythm-critical clock gene products, frq mRNA and FRQ protein, and in a lengthened period of the circadian clock. In addition, this mutation altered a second canonical property of the clock, temperature compensation: as temperature increased, period length decreased substantially. This temperature compensation defect correlated with a temperature-dependent increase in overall FRQ protein levels, with the …


Sars, A Sara Homolog Repressible By Agr, Is An Activator Of Protein A Synthesis In Staphylococcus Aureus, Ambrose L. Cheung, Katherine Schmidt, Brian Bateman, Adhar C. Manna Apr 2001

Sars, A Sara Homolog Repressible By Agr, Is An Activator Of Protein A Synthesis In Staphylococcus Aureus, Ambrose L. Cheung, Katherine Schmidt, Brian Bateman, Adhar C. Manna

Dartmouth Scholarship

The expression of protein A (spa) is repressed by global regulatory loci sarA and agr. Although SarA may directly bind to the spa promoter to downregulate spa expression, the mechanism by which agr represses spa expression is not clearly understood. In searching for SarA homologs in the partially released genome, we found a SarA homolog, encoding a 250-amino-acid protein designated SarS, upstream of the spa gene. The expression of sarS was almost undetectable in parental strain RN6390 but was highly expressed in agr and sarA mutants, strains normally expressing high level of protein A. Interestingly, protein A …


Differential Expression Of The Toxr Regulon In Classical And E1 Tor Biotypes Of Vibrio Cholerae Is Due To Biotype-Specific Control Over Toxt Expression., Victor J. Dirita, Melody Neely, Ronald K. Taylor, Paul M. Bruss Jul 1996

Differential Expression Of The Toxr Regulon In Classical And E1 Tor Biotypes Of Vibrio Cholerae Is Due To Biotype-Specific Control Over Toxt Expression., Victor J. Dirita, Melody Neely, Ronald K. Taylor, Paul M. Bruss

Dartmouth Scholarship

The two major disease-causing biotypes of Vibrio cholerae, classical and El Tor, exhibit differences in their epidemic nature. Their behavior in the laboratory also differs in that El Tor strains produce two major virulence factors, cholera toxin (CT) and the toxin coregulated pilus (TCP), only under very restricted growth conditions, whereas classical strains do so in standard laboratory medium. Expression of toxin and TCP is controlled by two activator proteins, ToxR and ToxT, that operate in cascade fashion with ToxR controlling the synthesis of ToxT. Both biotypes express equivalent levels of ToxR, but only classical strains appear to express ToxT …