Open Access. Powered by Scholars. Published by Universities.®

Agronomy and Crop Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Agronomy and Crop Sciences

The Trehalose Pathway In Maize: Conservation And Gene Regulation In Response To The Diurnal Cycle And Extended Darkness, Clémence Henry, Samuel W. Bledsoe, Allison Siekman, Alec Kollman, Brian M. Waters, Regina Feil, Mark Stitt, L. Mark Lagrimini Sep 2014

The Trehalose Pathway In Maize: Conservation And Gene Regulation In Response To The Diurnal Cycle And Extended Darkness, Clémence Henry, Samuel W. Bledsoe, Allison Siekman, Alec Kollman, Brian M. Waters, Regina Feil, Mark Stitt, L. Mark Lagrimini

Department of Agronomy and Horticulture: Faculty Publications

Energy resources in plants are managed in continuously changing environments, such as changes occurring during the day/night cycle. Shading is an environmental disruption that decreases photosynthesis, compromises energy status, and impacts on crop productivity. The trehalose pathway plays a central but not well-defined role in maintaining energy balance. Here, we characterized the maize trehalose pathway genes and deciphered the impacts of the diurnal cycle and disruption of the day/night cycle on trehalose pathway gene expression and sugar metabolism. The maize genome encodes 14 trehalose-6-phosphate synthase (TPS) genes, 11 trehalose-6-phosphate phosphatase (TPP) genes, and one trehalase gene. Transcript abundance of most …


Global Changes In Mineral Transporters In Tetraploid Switchgrasses (Panicum Virgatum L.), Nathan A. Palmer, Aaron J. Saathoff, Brian M. Waters, Teresa Donze, Tiffany M. Heng-Moss, Paul Twigg, Christian M. Tobias, Gautam Sarath Jan 2014

Global Changes In Mineral Transporters In Tetraploid Switchgrasses (Panicum Virgatum L.), Nathan A. Palmer, Aaron J. Saathoff, Brian M. Waters, Teresa Donze, Tiffany M. Heng-Moss, Paul Twigg, Christian M. Tobias, Gautam Sarath

Department of Agronomy and Horticulture: Faculty Publications

Switchgrass (Panicum virgatum L) is a perennial, C4 grass with great potential as a biofuel crop. An in-depth understanding of the mechanisms that control mineral uptake, distribution, and remobilization will benefit sustainable production. Nutrients are mobilized from aerial portions to below-ground crowns and rhizomes as a natural accompaniment to above-ground senescence post seed-set. Mineral uptake and remobilization is dependent on transporters, however, little if any information is available about the specific transporters that are needed and how their relative expression changes over a growing season.Using well-defined classes of mineral transporters, we identified 520 genes belonging to 40 different transporter …


Switchgrass (Panicum Virgatum L) Flag Leaf Transcriptomes Reveal Molecular Signatures Of Leaf Development, Senescence, And Mineral Dynamics, Nathan A. Palmer, Teresa Donze-Reiner, David Horvath, Tiffany Heng-Moss, Brian M. Waters, Christian M. Tobias, Gautam Sarath Jan 2014

Switchgrass (Panicum Virgatum L) Flag Leaf Transcriptomes Reveal Molecular Signatures Of Leaf Development, Senescence, And Mineral Dynamics, Nathan A. Palmer, Teresa Donze-Reiner, David Horvath, Tiffany Heng-Moss, Brian M. Waters, Christian M. Tobias, Gautam Sarath

Department of Agronomy and Horticulture: Faculty Publications

Switchgrass flag leaves can be expected to be a source of carbon to the plant, and its senescence is likely to impact the remobilization of nutrients from the shoots to the rhizomes. However, many genes have not been assigned a function in specific stages of leaf development. Here, we characterized gene expression in flag leaves over their development. By merging changes in leaf chlorophyll and the expression of genes for chlorophyll biosynthesis and degradation, a four-phase molecular roadmap for switchgrass flag leaf ontogeny was developed. Genes associated with early leaf development were up-regulated in phase 1. Phase 2 leaves had …