Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Neurons

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 66

Full-Text Articles in Neuroscience and Neurobiology

Nucleus Accumbens Core Single Cell Ensembles Bidirectionally Respond To Experienced Versus Observed Aversive Events, Oyku Dinckol, Noah Harris Wenger, Jennifer E Zachry, Munir Gunes Kutlu Dec 2023

Nucleus Accumbens Core Single Cell Ensembles Bidirectionally Respond To Experienced Versus Observed Aversive Events, Oyku Dinckol, Noah Harris Wenger, Jennifer E Zachry, Munir Gunes Kutlu

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Fear learning is a critical feature of survival skills among mammals. In rodents, fear learning manifests itself through direct experience of the aversive event or social transmission of aversive stimuli such as observing and acting on conspecifics' distress. The neuronal network underlying the social transmission of information largely overlaps with the brain regions that mediate behavioral responses to aversive and rewarding stimuli. In this study, we recorded single cell activity patterns of nucleus accumbens (NAc) core neurons using in vivo optical imaging of calcium transients via miniature scopes. This cutting-edge imaging methodology not only allows us to record activity patterns …


Extravasated Brain-Reactive Autoantibodies Perturb Neuronal Surface Protein Expression In Alzheimer's Pathology, Wardah Bajwa, Mary Kosciuk, Randel L. Swanson, Anuradha Krishnan, Venkat Venkataraman, Robert Nagele, Nimish Acharya May 2023

Extravasated Brain-Reactive Autoantibodies Perturb Neuronal Surface Protein Expression In Alzheimer's Pathology, Wardah Bajwa, Mary Kosciuk, Randel L. Swanson, Anuradha Krishnan, Venkat Venkataraman, Robert Nagele, Nimish Acharya

Rowan-Virtua Research Day

Background: Increased blood-brain barrier (BBB) permeability is reported in both the neuropathological and in vivo studies in both Alzheimer’s Disease (AD) and age matched cognitively normal, no cognitive impairment (NCI), subjects. Impaired BBB allows various vascular components such as immunoglobulin G (IgG) to extravasate into the brain and specifically bind to various neuronal surface proteins (NSP), also known as brain reactive autoantibodies (BrABs). This interaction is predicted to further enhance deposition of amyloid plaques.

Hypothesis: Interaction between extravasated BrABs and its cognate NSPs lower the expression of that NSPs in AD patients.

Methods: We selected Western blotting technique to study …


Scale-Free Behavioral Dynamics Directly Linked With Scale-Free Cortical Dynamics, Sabrina Jones May 2022

Scale-Free Behavioral Dynamics Directly Linked With Scale-Free Cortical Dynamics, Sabrina Jones

Physics Undergraduate Honors Theses

In organisms, an interesting phenomenon occurs in both behavior and neuronal activity: organization with fractal, scale-free fluctuations over multiple spatiotemporal orders of magnitude (1,2). In regard to behavior, this sort of complex structure-- which manifests itself from small scale fidgeting to purposeful, full body movements-- may support goals such as foraging (3-6), visual search (4), and decision making (7,8). Likewise, the presence of this sort of structure in the cerebral cortex in the form of spatiotemporal cascades, coined “neuronal avalanches,” may offer optimal information transfer (9). Thus, when considering the functional relationship between the cerebral cortex and movements of the …


Mechanisms Underlying Pre- And Postnatal Development Of The Mouse Vomeronasal Organ, Raghu Ram Katreddi Jan 2022

Mechanisms Underlying Pre- And Postnatal Development Of The Mouse Vomeronasal Organ, Raghu Ram Katreddi

Legacy Theses & Dissertations (2009 - 2024)

The Vomeronasal organ (VNO) is a specialized olfactory sensory organ located in the ventral region of the nasal cavity in rodents. The vomeronasal epithelium (VNE) of rodents is composed of 2 major types of vomeronasal sensory neurons (VSNs): 1) VSNs distributed in the apical VNE regions that express vomeronasal type-1 receptors (V1Rs) and the G protein subunit Gi2, and 2) VSNs in the basal territories of the VNE that express vomeronasal type-2 receptors (V2Rs) and the G subunit Go. Besides these two neuronal types, VNE also accommodate a third non-neuronal cell type called Sustentacular cells that lie anatomically above apical …


The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan May 2021

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan

University Scholar Projects

The granule cells are the most abundant neuronal type in the human brain. Rapid proliferation of granule cell progenitors results in dramatic expansion and folding of the cerebellar cortex during postnatal development. Mis-regulation of this proliferation process causes medulloblastoma, the most prevalent childhood brain tumor. In the developing cerebellum, granule cells are derived from Atoh1-expressing cells, which arise from the upper rhombic lip (the interface between the roof plate and neuroepithelium). In addition to granule cells, the Atoh1 lineage also gives rise to different types of neurons including cerebellar nuclei neurons. In the current study, I have investigated the …


The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan May 2021

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan

Honors Scholar Theses

The granule cells are the most abundant neuronal type in the human brain. Rapid proliferation of granule cell progenitors results in dramatic expansion and folding of the cerebellar cortex during postnatal development. Mis-regulation of this proliferation process causes medulloblastoma, the most prevalent childhood brain tumor. In the developing cerebellum, granule cells are derived from Atoh1-expressing cells, which arise from the upper rhombic lip (the interface between the roof plate and neuroepithelium). In addition to granule cells, the Atoh1 lineage also gives rise to different types of neurons including cerebellar nuclei neurons. In the current study, I have investigated the …


Neuroglobin And Its Role In The Recovery Of Neuronal Cells In Hypoxic Conditions Using Hypoxia Inducible Factor– 1, Riya Shah Jan 2021

Neuroglobin And Its Role In The Recovery Of Neuronal Cells In Hypoxic Conditions Using Hypoxia Inducible Factor– 1, Riya Shah

Honors Undergraduate Theses

Stroke is the world's leading cause of adult disability, caused by lack of oxygen and nutrients to the brain due to a blood clot in a major artery. This leads to ischemic damage of neuronal cells that leads to paralysis, motor, and speech deficits. While most stroke therapies aim at removing or reducing the blood clots in the brain, few treatments target cell damage. Neuroglobin (NGB) is a protein in the brain that is able to aid in neuroprotection following oxidative stress. Hypoxia-Inducible Factor-1 (HIF-1) is a transcription factor that serves as a marker for cell recovery after hypoxia or …


Astrocytes Rescue Neuronal Health After Cisplatin Treatment Through Mitochondrial Transfer., Krystal English, Krystal English Aug 2020

Astrocytes Rescue Neuronal Health After Cisplatin Treatment Through Mitochondrial Transfer., Krystal English, Krystal English

Dissertations & Theses (Open Access)

Abstract

Astrocytes rescue neuronal health after cisplatin treatment through mitochondrial transfer.

Author: Krystal English

Advisory Professor: Dr. Cobi J. Heijnen, Ph.D.

Chemotherapy-induced cognitive impairments are associated with neuronal mitochondrial dysfunction. Cisplatin, a commonly used chemotherapeutic, induces neuronal mitochondrial dysfunction in vivo and in vitro. Astrocytes are key players in supporting neuronal development, synaptogenesis, axonal growth, metabolism and, potentially, mitochondrial health. We tested the hypothesis that astrocytes transfer healthy mitochondria to neurons after cisplatin treatment to restore neuronal health.

We used an in vitro system in which astrocytes with Mito-mCherry-labeled mitochondria were co-cultured with primary cortical neurons or neuronal stem …


Bridge To Neuroscience Workshop: An Effective Educational Tool To Introduce Principles Of Neuroscience To Hispanics Students, Alexandra Colon-Rodriguez, Chelsea T. Tiernan, Eileen S. Rodriguez-Tapia, William D. Atchison Dec 2019

Bridge To Neuroscience Workshop: An Effective Educational Tool To Introduce Principles Of Neuroscience To Hispanics Students, Alexandra Colon-Rodriguez, Chelsea T. Tiernan, Eileen S. Rodriguez-Tapia, William D. Atchison

Peer Reviewed Articles

Neuroscience as a discipline is rarely covered in educational institutions in Puerto Rico. In an effort to overcome this deficit we developed the Bridge to Neuroscience Workshop (BNW), a full-day hands-on workshop in neuroscience education. BNW was conceived as an auxiliary component of a parent recruitment program called Bridge to the PhD in Neuroscience Program (BPNP). The objectives of BNW are to identify promising students for BPNP, and to increase awareness of neuroscience as a discipline and a career option. BNW introduces basic concepts in neuroscience using a variety of educational techniques, including mini-lectures, interactive discussions, case studies, experimentation, and …


A Computational Study Of Sleep And The Hemispheres Of The Brain, Tera Ashley Glaze Oct 2019

A Computational Study Of Sleep And The Hemispheres Of The Brain, Tera Ashley Glaze

Dissertations

Sleep and sleep cycles have been studied for over a century, and scientists have worked on modeling sleep for nearly as long as computers have existed. Despite this extensive study, sleep still holds many mysteries. Larger and more extensive sleep-wake models have been developed, and the circadian drive has been depicted in numerous fashions, as well as incorporated into scores of studies. With the ever-growing knowledge of sleep comes the need to find more ways to examine, quantify, and define it in the context of the most complex part of the human anatomy – the brain. Presented here is the …


Altered Gating Of KV1.4 In The Nucleus Accumbens Suppresses Motivation For Reward, Bernadette O'Donovan, Adewale Adeluyi, Erin L Anderson, Robert D. Cole, Jill R. Turner, Pavel I. Ortinski Sep 2019

Altered Gating Of KV1.4 In The Nucleus Accumbens Suppresses Motivation For Reward, Bernadette O'Donovan, Adewale Adeluyi, Erin L Anderson, Robert D. Cole, Jill R. Turner, Pavel I. Ortinski

Neuroscience Faculty Publications

Deficient motivation contributes to numerous psychiatric disorders, including withdrawal from drug use, depression, schizophrenia, and others. Nucleus accumbens (NAc) has been implicated in motivated behavior, but it remains unclear whether motivational drive is linked to discrete neurobiological mechanisms within the NAc. To examine this, we profiled cohorts of Sprague-Dawley rats in a test of motivation to consume sucrose. We found that substantial variability in willingness to exert effort for reward was not associated with operant responding under low-effort conditions or stress levels. Instead, effort-based motivation was mirrored by a divergent NAc shell transcriptome with differential regulation at potassium and dopamine …


Quantifying Expression Of Interneuron Subtype Markers For Dlx-2 Transfected Ng2 Cells, Timothy Nolan May 2019

Quantifying Expression Of Interneuron Subtype Markers For Dlx-2 Transfected Ng2 Cells, Timothy Nolan

Honors Scholar Theses

Neurons are a post-mitotic cell population, and therefore, they are not able to regenerate in vivo after a traumatic injury. Because inhibitory GABAergic interneurons and oligodendrocyte precursor cells (OPCs) are derived from the same precursor, recent studies have focused on transforming these OPCs into GABAergic neurons. However, there are different types of GABAergic interneurons that have different electrophysiological responses, which can lead to functional differences. The Nishiyama laboratory had already used a key gene in GABAergic interneuron and OPC differentiation, Distal-less homeobox 2 (Dlx-2), to transfect OPCs; early electrophysiology tests showed most of these transfected cells behaved like immature neurons, …


Spag17 Deficiency Impairs Neuronal Cell Differentiation In Developing Brain, Olivia J. Choi Jan 2019

Spag17 Deficiency Impairs Neuronal Cell Differentiation In Developing Brain, Olivia J. Choi

Theses and Dissertations

The development of the nervous system is a multi-level, time-sensitive process that relies heavily on cell differentiation. However, the molecular mechanisms that control brain development remain poorly understood. We generated a knockout (KO) mouse for the cilia associated gene Spag17. These animals develop hydrocephalus and enlarged ventricles consistent with the role of Spag17 in the motility of ependymal cilia. However, other phenotypes that cannot be explained by this role were also present. Recently, a mutation in Spag17 has been associated with brain malformations and severe intellectual disability in humans. Therefore, we hypothesized that Spag17 plays a crucial role in …


Investigating The Role Of Neuronal Aging In Fragile X-Associated Tremor/Ataxia Syndrome, Katlin Marie Hencak Jan 2019

Investigating The Role Of Neuronal Aging In Fragile X-Associated Tremor/Ataxia Syndrome, Katlin Marie Hencak

Honors Undergraduate Theses

Fragile X-associated tremor/ataxia syndrome (FXTAS) is an X-linked late-onset neurodegenerative disorder caused by a noncoding trinucleotide repeat expansion in the FMR1 gene. This gene produces fragile x mental retardation protein (FMRP), an RNA binding protein whose targets are involved in brain development and synaptic plasticity. One of the proposed mechanisms of FXTAS pathogenesis is an RNA gain-of-function in which the repeat expansion causes toxic mRNA that sequesters important proteins in the cell, interfering with their functions. Another suggested method of pathogenesis is through a mutant protein called FMRpolyG. This protein results from repeat-associated non-AUG (RAN) translation, in which the expanded …


Differentiation Of Neurons And Glia For Use In Cellular Connectomics, Jacob T. Brettin Dec 2018

Differentiation Of Neurons And Glia For Use In Cellular Connectomics, Jacob T. Brettin

Chancellor’s Honors Program Projects

No abstract provided.


Cell Specific Control Of The Pallidostriatal Pathway, Shubha Verma '19 Nov 2018

Cell Specific Control Of The Pallidostriatal Pathway, Shubha Verma '19

Student Publications & Research

Parkinson’s Disease is a neurodegenerative disorder of the basal ganglia. The main cause for Parkinson’s Disease is the depletion of dopamine, a neurotransmitter. The basal ganglia contains four major nuclei: the substantia nigra, the subthalamic nucleus, the external globus pallidus, and the striatum. These nuclei communicate with each other by the use of neurons.


Minocycline Protects Developing Brain Against Ethanol-Induced Damage, Xin Wang, Kai Zhang, Fanmuyi Yang, Zhenhua Ren, Mei Xu, Jacqueline A. Frank, Zun-Ji Ke, Jia Luo Feb 2018

Minocycline Protects Developing Brain Against Ethanol-Induced Damage, Xin Wang, Kai Zhang, Fanmuyi Yang, Zhenhua Ren, Mei Xu, Jacqueline A. Frank, Zun-Ji Ke, Jia Luo

Pharmacology and Nutritional Sciences Faculty Publications

Fetal alcohol spectrum disorders (FASD) are caused by ethanol exposure during the pregnancy and is the leading cause of mental retardation. Ethanol exposure during the development results in the loss of neurons in the developing brain, which may underlie many neurobehavioral deficits associated with FASD. It is important to understand the mechanisms underlying ethanol-induced neuronal loss and develop appropriate therapeutic strategies. One of the potential mechanisms involves neuroimmune activation. Using a third trimester equivalent mouse model of ethanol exposure, we demonstrated that ethanol induced a wide-spread neuroapoptosis, microglial activation, and neuroinflammation in C57BL/6 mice. Minocycline is an antibiotic that inhibits …


Brain Energy Homeostasis And The Regulation Of N-Acetyl-Aspartate Metabolism In Development And Disease, Samantha Zaroff Dec 2017

Brain Energy Homeostasis And The Regulation Of N-Acetyl-Aspartate Metabolism In Development And Disease, Samantha Zaroff

Graduate School of Biomedical Sciences Theses and Dissertations

N-acetylaspartate (NAA) is a non-invasive clinical marker of neuronal metabolic integrity because of its strong proton magnetic resonance spectroscopy (H-MRS) peak and direct correlation with energetic integrity. Specifically, NAA is used to track the progression of neurodegenerative diseases due to the characteristic reduction of whole brain levels of NAA which occur simultaneously with reduced glucose utilization and mitochondrial dysfunction, but prior to the onset of disease specific pathology. However, NAA will also significantly increase simultaneously with energetic integrity during periods of recovery or remission in applicable disorders, such as traumatic brain injuries. Unfortunately, it remains enigmatic exactly why NAA is …


Analytical Modeling Of A Communication Channel Based On Subthreshold Stimulation Of Neurobiological Networks, Alireza Khodaei Dec 2017

Analytical Modeling Of A Communication Channel Based On Subthreshold Stimulation Of Neurobiological Networks, Alireza Khodaei

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

The emergence of wearable and implantable machines manufactured artificially or synthesized biologically opens up a new horizon for patient-centered health services such as medical treatment, health monitoring, and rehabilitation with minimized costs and maximized popularity when provided remotely via the Internet. In particular, a swarm of machines at the scale of a single cell down to the nanoscale can be deployed in the body by the non-invasive or minimally invasive operation (e.g., swallowing and injection respectively) to perform various tasks. However, an individual machine is only able to perform basic tasks so it needs to exchange data with the others …


Novel Calcium-Related Targets Of Insulin In Hippocampal Neurons, Shaniya Maimaiti, Hilaree N. Frazier, Katie L. Anderson, Adam O. Ghoweri, Lawrence D. Brewer, Nada M. Porter, Olivier Thibault Nov 2017

Novel Calcium-Related Targets Of Insulin In Hippocampal Neurons, Shaniya Maimaiti, Hilaree N. Frazier, Katie L. Anderson, Adam O. Ghoweri, Lawrence D. Brewer, Nada M. Porter, Olivier Thibault

Pharmacology and Nutritional Sciences Faculty Publications

Both insulin signaling disruption and Ca2+ dysregulation are closely related to memory loss during aging and increase the vulnerability to Alzheimer's disease (AD). In hippocampal neurons, aging-related changes in calcium regulatory pathways have been shown to lead to higher intracellular calcium levels and an increase in the Ca2+-dependent afterhyperpolarization (AHP), which is associated with cognitive decline. Recent studies suggest that insulin reduces the Ca2+-dependent AHP. Given the sensitivity of neurons to insulin and evidence that brain insulin signaling is reduced with age, insulin-mediated alterations in calcium homeostasis may underlie the beneficial actions of insulin in …


Identification Of Changes In Neuronal Function As A Consequence Of Aging And Tauopathic Neurodegeneration Using A Novel And Sensitive Magnetic Resonance Imaging Approach, Sarah N. Fontaine, Alexandria Ingram, Ryan A. Cloyd, Shelby E. Meier, Emily Miller, Danielle N. Lyons, Grant K. Nation, Elizabeth Mechas, Blaine Weiss, Chiara Lanzillotta, Fabio Di Domenico, Frederick A. Schmitt, David K. Powell, Moriel H. Vandsburger, Jose Francisco Abisambra Aug 2017

Identification Of Changes In Neuronal Function As A Consequence Of Aging And Tauopathic Neurodegeneration Using A Novel And Sensitive Magnetic Resonance Imaging Approach, Sarah N. Fontaine, Alexandria Ingram, Ryan A. Cloyd, Shelby E. Meier, Emily Miller, Danielle N. Lyons, Grant K. Nation, Elizabeth Mechas, Blaine Weiss, Chiara Lanzillotta, Fabio Di Domenico, Frederick A. Schmitt, David K. Powell, Moriel H. Vandsburger, Jose Francisco Abisambra

Sanders-Brown Center on Aging Faculty Publications

Tauopathies, the most common of which is Alzheimer’s disease (AD), constitute the most crippling neurodegenerative threat to our aging population. Tauopathic patients have significant cognitive decline accompanied by irreversible and severe brain atrophy, and it is thought that neuronal dysfunction begins years before diagnosis. Our current understanding of tauopathies has yielded promising therapeutic interventions but have all failed in clinical trials. This is partly due to the inability to identify and intervene in an effective therapeutic window early in the disease process. A major challenge that contributes to the definition of an early therapeutic window is limited technologies. To address …


Girk2 And Gababr1 Downregulate In Response To Ttx As Girk2, Gababr1, And Gababr2 Are Not Affected By Bc Treatment, Staci E. Hammer, Amanda Weiss, Hee Jung Chung Jul 2017

Girk2 And Gababr1 Downregulate In Response To Ttx As Girk2, Gababr1, And Gababr2 Are Not Affected By Bc Treatment, Staci E. Hammer, Amanda Weiss, Hee Jung Chung

PRECS student projects

Homeostatic plasticity is the response neurons undergo to regulate changes in excitability levels and bring the cells back to homeostasis. Research on homeostatic plasticity at the molecular level can lead to improved treatments for neurological diseases such as epilepsy, Alzheimer's, and schizophrenia. The research featured in this poster looks at the response of GIRK (G protein-gated inwardly rectifying potassium) channels and GABAb (gamma-amniobutyric acid) receptors to neurotoxins, tetrodotoxin (TTX) or bicuculline (BC).

Prolonged activity blockade of 48 hour TTX treatment significantly reduced GABABR1 and GIRK2 expression. This supports the idea that because these two proteins inhibit action potentials, there will …


Examining The Neuronal Dopaminergic Pathway Underlying Sleep Behavior And Related Dopamine Sleep Disorders, Mary Beth Putz May 2017

Examining The Neuronal Dopaminergic Pathway Underlying Sleep Behavior And Related Dopamine Sleep Disorders, Mary Beth Putz

Undergraduate Honors Theses

The human brain is an extremely complex organ with approximately 100 billion different neurons that are constantly sending and receiving messages. These messages are sent using the chemical messengers of the brain: neurotransmitters and neuromodulators. Mechanisms of neural control of sleep are substantially conserved across species. Evidence from multiple animal models including flies, zebrafish, and mice shows that the arousal, or wake phase, is regulated by conserved neuromodulators such as dopamine, norepinephrine, and serotonin. Since these neurotransmitter systems are distributed throughout the brain and sub-serve many functions in addition to sleep, the precise circuit mechanisms by which these neurotransmitters regulate …


Electrophysiological And Morphological Characterization Of Neurons In The Granular Retrosplenial Cortex, Andrew Nicholas Nye May 2017

Electrophysiological And Morphological Characterization Of Neurons In The Granular Retrosplenial Cortex, Andrew Nicholas Nye

Theses and Dissertations

The retrosplenial cortex (RSC) is a centrally located brain region that has reciprocal connections with several brain regions important for memory, including the prefrontal cortex, para-hippocampal region, hippocampal formation, and rhinal cortices. The RSC is also well connected with structures important for sensory processing, including the parietal cortex, thalamus, and visual cortices. Due to this connectivity, and early evidence that suggests the RSC plays a critical role in learning and memory, the region has recently gained much more research attention. Early studies found that patients with brain damage that includes the RSC have difficulty with verbal and visual information, retrieving …


Carisbamate Blockade Of T-Type Voltage-Gated Calcium Channels, Do Young Kim, Fang-Xiong Zhang, Stan T. Nakanishi, Timothy Mettler, Ik-Hyun Cho, Younghee Ahn, Florian Hiess, Lina Chen, Patrick G. Sullivan, S. R. Wayne Chen, Gerald W. Zamponi, Jong M. Rho Apr 2017

Carisbamate Blockade Of T-Type Voltage-Gated Calcium Channels, Do Young Kim, Fang-Xiong Zhang, Stan T. Nakanishi, Timothy Mettler, Ik-Hyun Cho, Younghee Ahn, Florian Hiess, Lina Chen, Patrick G. Sullivan, S. R. Wayne Chen, Gerald W. Zamponi, Jong M. Rho

Spinal Cord and Brain Injury Research Center Faculty Publications

Objectives

Carisbamate (CRS) is a novel monocarbamate compound that possesses antiseizure and neuroprotective properties. However, the mechanisms underlying these actions remain unclear. Here, we tested both direct and indirect effects of CRS on several cellular systems that regulate intracellular calcium concentration [Ca2+]i.

Methods

We used a combination of cellular electrophysiologic techniques, as well as cell viability, Store Overload‐Induced Calcium Release (SOICR), and mitochondrial functional assays to determine whether CRS might affect [Ca2+]i levels through actions on the endoplasmic reticulum (ER), mitochondria, and/or T‐type voltage‐gated Ca2+ channels.

Results

In CA3 pyramidal neurons, kainic …


GabaB Receptor Attenuation Of GabaA Currents In Neurons Of The Mammalian Central Nervous System, Wen Shen, Changlong Nan, Peter T. Nelson, Harris Ripps, Malcolm M. Slaughter Mar 2017

GabaB Receptor Attenuation Of GabaA Currents In Neurons Of The Mammalian Central Nervous System, Wen Shen, Changlong Nan, Peter T. Nelson, Harris Ripps, Malcolm M. Slaughter

Pathology and Laboratory Medicine Faculty Publications

Ionotropic receptors are tightly regulated by second messenger systems and are often present along with their metabotropic counterparts on a neuron's plasma membrane. This leads to the hypothesis that the two receptor subtypes can interact, and indeed this has been observed in excitatory glutamate and inhibitory GABA receptors. In both systems the metabotropic pathway augments the ionotropic receptor response. However, we have found that the metabotropic GABAB receptor can suppress the ionotropic GABAA receptor current, in both the in vitro mouse retina and in human amygdala membrane fractions. Expression of amygdala membrane microdomains in Xenopus oocytes by microtransplantation …


Selective Suppression Of The Α Isoform Of P38 Mapk Rescues Late-Stage Tau Pathology, Nicole Maphis, Shanya Jiang, Guixiang Xu, Olga N. Kokiko-Cochran, Saktimayee M. Roy, Linda J. Van Eldik, D. Martin Watterson, Bruce T. Lamb, Kiran Bhaskar Dec 2016

Selective Suppression Of The Α Isoform Of P38 Mapk Rescues Late-Stage Tau Pathology, Nicole Maphis, Shanya Jiang, Guixiang Xu, Olga N. Kokiko-Cochran, Saktimayee M. Roy, Linda J. Van Eldik, D. Martin Watterson, Bruce T. Lamb, Kiran Bhaskar

Sanders-Brown Center on Aging Faculty Publications

Background: Hyperphosphorylation and aggregation of tau protein are the pathological hallmarks of Alzheimer’s disease and related tauopathies. We previously demonstrated that the microglial activation induces tau hyperphosphorylation and cognitive impairment via activation of p38 mitogen-activated protein kinase (p38 MAPK) in the hTau mouse model of tauopathy that was deficient for microglial fractalkine receptor CX3CR1.

Method: We report an isoform-selective, brain-permeable, and orally bioavailable small molecule inhibitor of p38α MAPK (MW181) and its effects on tau phosphorylation in vitro and in hTau mice.

Results: First, pretreatment of mouse primary cortical neurons with MW181 completely blocked inflammation-induced p38α MAPK activation and AT8 …


Cellular And Genetic Bases Of Cold Nociception And Nociceptive Sensitization In Drosophila Larvae, Heather N. Turner Dec 2016

Cellular And Genetic Bases Of Cold Nociception And Nociceptive Sensitization In Drosophila Larvae, Heather N. Turner

Dissertations & Theses (Open Access)

Organisms from flies to mammals utilize thermoreceptors to detect and respond to noxious thermal stimuli. Although much is understood about noxious heat avoidance, our understanding of the basic biology of noxious cold perception is gravely minimal. Numerous clinical conditions disrupt the sensory machinery, such as in patients suffering from tissue damage (from wound or sunburn), or injury to the peripheral nerves, as in patients with diabetes or undergoing chemotherapy. Our goal is to determine the genetic basis for noxious cold perception and injury-induced nociceptive sensitization using the genetically tractable Drosophila model. Using a novel "cold probe" tool and assay we …


Associative Spike Timing-Dependent Potentiation Of The Basal Dendritic Excitatory Synapses In The Hippocampus In Vivo., Thomas K Fung, Clayton S Law, L Stan Leung Jun 2016

Associative Spike Timing-Dependent Potentiation Of The Basal Dendritic Excitatory Synapses In The Hippocampus In Vivo., Thomas K Fung, Clayton S Law, L Stan Leung

Physiology and Pharmacology Publications

Spike timing-dependent plasticity in the hippocampus has rarely been studied in vivo. Using extracellular potential and current source density analysis in urethane-anesthetized adult rats, we studied synaptic plasticity at the basal dendritic excitatory synapse in CA1 after excitation-spike (ES) pairing; E was a weak basal dendritic excitation evoked by stratum oriens stimulation, and S was a population spike evoked by stratum radiatum apical dendritic excitation. We hypothesize that positive ES pairing-generating synaptic excitation before a spike-results in long-term potentiation (LTP) while negative ES pairing results in long-term depression (LTD). Pairing (50 pairs at 5 Hz) at ES intervals of -10 …


The Tnfα-Transgenic Rat: Hippocampal Synaptic Integrity, Cognition, Function, And Post-Ischemic Cell Loss, L. Creed Pettigrew, Richard J. Kryscio, Christopher M. Norris May 2016

The Tnfα-Transgenic Rat: Hippocampal Synaptic Integrity, Cognition, Function, And Post-Ischemic Cell Loss, L. Creed Pettigrew, Richard J. Kryscio, Christopher M. Norris

Sanders-Brown Center on Aging Faculty Publications

The cytokine, tumor necrosis factor α (TNFα), is a key regulator of neuroinflammation linked to numerous neurodegenerative conditions and diseases. The present study used transgenic rats that overexpress a murine TNFα gene, under the control of its own promoter, to investigate the impact of chronically elevated TNFα on hippocampal synaptic function. Neuronal viability and cognitive recovery in TNFα Tg rats were also determined following an ischemic insult arising from reversible middle cerebral artery occlusion (MCAO). Basal CA3-CA1 synaptic strength, recorded in acute brain slices, was not significantly different between eight-week-old TNFα Tg rats and non-Tg rats. In contrast, slices from …