Open Access. Powered by Scholars. Published by Universities.®

Pathogenic Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Pathogenic Microbiology

The Roles Of Biotin In Candida Albicans Physiology, Nur Ras Aini Ahmad Hussin Nov 2016

The Roles Of Biotin In Candida Albicans Physiology, Nur Ras Aini Ahmad Hussin

Dissertations and Theses in Biological Sciences

Due to the increased number of immunocompromised patients, infections by Candida albicans have significantly increased in recent years. C. albicans transition from yeast to germ tubes is an essential factor for virulence. In this study we noted that Lee's medium, commonly used to induce filamentation, contained 500-fold more biotin than needed for growth. Thus, we investigated the effects of excess biotin on growth rate and filamentation by C. albicans in different media. At 37 °C, excess biotin (4 µM) enhanced germ tube formation (GTF) ca. 10-fold in both Lee's medium and a defined glucose proline medium, and ca ...


Farnesol Signaling In Candida Albicans, Melanie L. Langford Apr 2010

Farnesol Signaling In Candida Albicans, Melanie L. Langford

Dissertations and Theses in Biological Sciences

Candida albicans is a polymorphic fungus that causes a range of disease in humans, from mucosal infections to systemic disease. Its ability to cause disease is linked to conversion between yeast and filamentous forms of growth, and the first quorum-sensing molecule discovered in an eukaryote, farnesol, blocks this transition. In C. albicans, farnesol also kills mating-competent opaque cells, inhibits biofilm formation, protects the cells from oxidative stress, and can be a virulence factor or protective agent in disseminated and mucosal mouse models of infection, respectively. While much emphasis has been placed on determining its effect on C. albicans morphology, the ...


Candida Albicans Cellwall Components And Farnesol Stimulate The Expression Of Both Inflammatory And Regulatory Cytokines In The Murine Raw264.7 Macrophage Cell Line, Suman Ghosh, Nina Howe, Katie Volk, Swetha Tati, Kenneth W. Nickerson, Thomas M. Petro Jan 2010

Candida Albicans Cellwall Components And Farnesol Stimulate The Expression Of Both Inflammatory And Regulatory Cytokines In The Murine Raw264.7 Macrophage Cell Line, Suman Ghosh, Nina Howe, Katie Volk, Swetha Tati, Kenneth W. Nickerson, Thomas M. Petro

Kenneth Nickerson Papers

Candida albicans causes candidiasis, secretes farnesol, and switches from yeast to hyphae to escape from macrophages after phagocytosis. However, before escape, macrophages may respond to C. albicans’ pathogen-associated molecular patterns (PAMPs) through toll-like receptor 2 (TLR2) and dectin-1 receptors by expressing cytokines involved in adaptive immunity, inflammation, and immune regulation. Therefore, macrophages and the RAW264.7 macrophage line were challenged with C. albicans preparations of live wild-type cells, heat-killed cells, a live mutant defective in hyphae formation, a live mutant producing less farnesol, or an isolate producing farnesoic acid instead of farnesol. Interleukin-6 (IL-6), and IL-1b, IL- 10, and tumor ...


Genome-Wide Transcriptional Profiling Of The Cyclic Amp-Dependent Signaling Pathway During Morphogenic Transitions Of Candida Albicans, Yong-Sun Bahn, Matthew Molenda, Janet F. Staab, Courtney A. Lyman, Laura J. Gordon, Paula Sundstrom Dec 2007

Genome-Wide Transcriptional Profiling Of The Cyclic Amp-Dependent Signaling Pathway During Morphogenic Transitions Of Candida Albicans, Yong-Sun Bahn, Matthew Molenda, Janet F. Staab, Courtney A. Lyman, Laura J. Gordon, Paula Sundstrom

Open Dartmouth: Faculty Open Access Articles

Candida albicans is an opportunistic human fungal pathogen that causes systemic candidiasis as well as superficial mucosal candidiasis. In response to the host environment, C. albicans transitions between yeast and hyphal forms. In particular, hyphal growth is important in facilitating adhesion and invasion of host tissues, concomitant with the expression of various hypha-specific virulence factors. In previous work, we showed that the cyclic AMP (cAMP) signaling pathway plays a crucial role in morphogenic transitions and virulence of C. albicans by studying genes encoding adenylate cyclase-associated protein (CAP1) and high-affinity phosphodiesterase (PDE2) (Y. S. Bahn, J. Staab, and P. Sundstrom, Mol ...