Open Access. Powered by Scholars. Published by Universities.®

Pathogenic Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Pathogenic Microbiology

The Pseudomonas Syringae Type Iii Secretion System: The Translocator Proteins, Their Secretion, And The Restriction Of Translocation By The Plant Immune System, Emerson Crabill Jul 2012

The Pseudomonas Syringae Type Iii Secretion System: The Translocator Proteins, Their Secretion, And The Restriction Of Translocation By The Plant Immune System, Emerson Crabill

School of Biological Sciences: Dissertations, Theses, and Student Research

Pseudomonas syringae is a Gram-negative plant pathogen whose virulence is dependent upon its type III secretion system (T3SS), a nanosyringe that facilitates translocation, or injection, of type III effector (T3E) proteins into eukaryotic cells. The primary function of P. syringae T3E proteins is suppression of plant immunity. Bacterial proteins called translocators form a translocon that forms a pore in the host plasma membrane which is traversed by T3Es. HrpK1, a putative P. syringae translocator, is a type III-secreted protein important for virulence and T3E injection, but not secretion of T3Es. Harpins are a group of proteins specific to plant pathogens …


Host Pathogen Interactions: Is Arabidopsis Thaliana Remembered By Its Nemesis Pseudomonas Syringae?, Daniel Z. Kreiser May 2012

Host Pathogen Interactions: Is Arabidopsis Thaliana Remembered By Its Nemesis Pseudomonas Syringae?, Daniel Z. Kreiser

Lawrence University Honors Projects

Plants contain innate immune systems that deter pathogen infection. Pattern recognition receptors bind microbe-associated molecular patterns (MAMPs), triggering immunity. MAMPs are proteins exclusive to pathogens that are typically indispensable for their survival. For this reason, MAMPs cannot be mutated or removed without causing pathogen death. However, this does not necessitate constitutive expression of MAMPs. In this study, the MAMP response of Arabidopsis thaliana was utilized to determine differential detection of MAMPs expressed by Pseudomonas syringe pv. tomato DC3000 when pretreated with A. thaliana. Results demonstrated that more MAMPs are detected when P. syringae had previously encountered A. thaliana, …