Open Access. Powered by Scholars. Published by Universities.®

Pathogenic Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Pathogenic Microbiology

Hybridized Polymeric Nano-Assemblies: Key Insights Into Addressing Mdr Infections, Ryan Landis Mar 2019

Hybridized Polymeric Nano-Assemblies: Key Insights Into Addressing Mdr Infections, Ryan Landis

Doctoral Dissertations

Multidrug-resistant (MDR) bacteria contribute to more than 700,000 annual deaths world-wide. Millions more suffer from limb amputations or face high healthcare treatment costs where prolonged and costly therapeutic regimens are used to counter MDR infections. While there is an international push to develop novel and more powerful antimicrobials to address the impending threat, one particularly interesting approach that has re-emerged are essential oils, phytochemical extracts derived from plant sources. While their antimicrobial activity demonstrates a promising avenue, their stability in aqueous media, limits their practical use in or on mammals. Inspired by the versatility of polymer nanotechnology and the sustainability …


Studies On The P. Aeruginosa T3s Translocon Assembly: Interaction Of Popd With Membranes, Yuzhou Tang Jul 2018

Studies On The P. Aeruginosa T3s Translocon Assembly: Interaction Of Popd With Membranes, Yuzhou Tang

Doctoral Dissertations

Type III secretion (T3S) system is deployed by a wide range of pathogens to manipulate host cell response and establish infection. The T3S system is a syringe-like apparatus that spans across the double membrane of bacteria, protruding 50nm-80nm into the extracellular space and connecting with target cell membrane. In Pseudomonas aeruginosa, the proteins PopB and PopD are secreted and found associated with the target eukaryotic cell membrane. These two proteins are believed to form a transmembrane complex or translocon to allow effector protein translocation. Despite its key role in pathogenesis, the assembly mechanism and structure of this critical transmembrane …


The Role Of The Metallochaperone Hypa In The Acid Survival And Activities Of Nickel Enzymes In Helicobacter Pylori, Heidi Hu Mar 2018

The Role Of The Metallochaperone Hypa In The Acid Survival And Activities Of Nickel Enzymes In Helicobacter Pylori, Heidi Hu

Doctoral Dissertations

Helicobacter pylori is a bacterium that has colonized the human gastric mucosa of over 50% of the world population. Persistent infection can cause gastritis, peptic ulcers, and cancers. The ability of H. pylori to colonize the acidic environment of the human stomach is dependent on the activity of the nickel containing enzymes, urease and NiFe-hydrogenase. The nickel metallochaperone, HypA, was previously shown to be required for the full activity of both enzymes. In addition to a Ni-binding site, HypA also contains a structural Zn site, which has been characterized to alter its averaged structure depending on pH and the presence …