Open Access. Powered by Scholars. Published by Universities.®

Molecular Genetics Commons

Open Access. Powered by Scholars. Published by Universities.®

Mutation

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 20 of 20

Full-Text Articles in Molecular Genetics

Fused In Sarcoma Regulates Glutamate Signaling And Oxidative Stress Response, Chiong-Hee Wong, Abu Rahat, Howard C Chang Jan 2024

Fused In Sarcoma Regulates Glutamate Signaling And Oxidative Stress Response, Chiong-Hee Wong, Abu Rahat, Howard C Chang

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Mutations in fused in sarcoma (fust-1) are linked to ALS. However, how these ALS causative mutations alter physiological processes and lead to the onset of ALS remains largely unknown. By obtaining humanized fust-1 ALS mutations via CRISPR-CAS9, we generated a C. elegans ALS model. Homozygous fust-1 ALS mutant and fust-1 deletion animals are viable in C. elegans. This allows us to better characterize the molecular mechanisms of fust-1-dependent responses. We found FUST-1 plays a role in regulating superoxide dismutase, glutamate signaling, and oxidative stress. FUST-1 suppresses SOD-1 and VGLUT/EAT-4 in the nervous system. FUST-1 also regulates synaptic AMPA-type glutamate receptor …


Isolation Of Arabidopsis Thaliana Plants Homozygous For An Insertional Inactivation Mutation Within Atprp4., Sydney Raitz, Timothy D. Trott Aug 2023

Isolation Of Arabidopsis Thaliana Plants Homozygous For An Insertional Inactivation Mutation Within Atprp4., Sydney Raitz, Timothy D. Trott

Research in Biology

The AtPRP4 gene in Arabidopsis thaliana has been shown to function in several specific parts of the plant’s cell wall. It is shown to be expressed in the seeds, radicles, roots, leaves, inflorescences, and embryos of Arabidopsis thaliana. These patterns have suggested unique functions for ATPRP4 in determining cell-type-specific wall structure during the development of a plant as well as contributing to defense reactions against physical damage to the plant and pathogen infection within the plant. In this study, a simple DNA prep was performed on the true leaves of Arabidopsis thaliana. Subsequent PCR reactions were performed using …


Quantitative And Qualitative Analysis Of Mutation In Pam-1 Of Model Organism Caenorhabditis Elegans., Jessica Stein, Jessica Stein May 2023

Quantitative And Qualitative Analysis Of Mutation In Pam-1 Of Model Organism Caenorhabditis Elegans., Jessica Stein, Jessica Stein

Honors College Theses

The pam-1 gene in the model roundworm Caenorhabditis elegans governs meiotic exit and establishment of cellular polarity in the single-celled C. elegans embryo. Mutation of the pam-1 gene results in reduced fertility and fecundity in adult C. elegans and disrupts the anatomy of the germinal gonad. The aim of this study is to qualitatively and quantitatively define the changes in the germline cells associated with mutations to the pam-1 gene. Specifically, we examined the stages of germ cell development within the gonads of adult worms, both wild-type and pam-1 compromised, and identified the changes in the length of the mitotic, …


Identification And Characterization Of Genetic Elements That Regulate A C-Di-Gmp Mediated Multicellular Trait In Pseudomonas Fluorescens, Collin Kessler Aug 2022

Identification And Characterization Of Genetic Elements That Regulate A C-Di-Gmp Mediated Multicellular Trait In Pseudomonas Fluorescens, Collin Kessler

Electronic Theses and Dissertations

Microbial communities contain densely packed cells where competition for space and resources are fierce. These communities are generally referred to as biofilms and provide advantages to individual cells against immunological and antimicrobial intervention, dehydration, and predation. High intracellular pools of cyclic diguanylate monophosphate (c-di-GMP) cause cells to aggregate during biofilm formation through the production of diverse extracellular polymers. Genes that encode c-di-GMP catalytic enzymes are commonly mutated during chronic infections where opportunists display enhanced resistance to phagocytosis and antibiotics. Our lab uses an emergent multicellular trait in the model organism Pseudomonas fluorescens Pf0-1 to study the emergence of c-di-GMP mutations …


The Genes Of Pain, Alina Semenova Apr 2021

The Genes Of Pain, Alina Semenova

Thinking Matters Symposium

Pain is an important defense mechanism that protects us from environmental factors that might harm us. Our body's response to pain helps us to avoid injury. However, constant pain is a problem. Management of constant pain is an important area of research. Studies have shown that genetic variation contributes to pain sensitivity.

Numerous pain-related genes and their functional polymorphisms (CYP450, MOR-1, COMT, GCH1, etc.) have been identified in the past ten years. In particular, three opioid receptors (OPRM, OPRD and OPRK) are associated with pain sensitivity. One of the most studied human functional polymorphisms is the debrisoquine/sparteine polymorphism of CYP2D6 …


Association Of Interleukin 17f With Arthritis In Punjabi Families Of Pakistan, Asia Parveen, Andleeb Batool, Maryam Mukhtar, Abdul Wajid, Naila Malkani Mar 2020

Association Of Interleukin 17f With Arthritis In Punjabi Families Of Pakistan, Asia Parveen, Andleeb Batool, Maryam Mukhtar, Abdul Wajid, Naila Malkani

Journal of Bioresource Management

Arthritis is a chronic inflammatory disease that causes severe joint pain. Interleukin 17F (IL17F) is considered as a candidate gene functionally; it mediates pro-inflammatory responses, depending on the type and site of inflammation. The present study examined the polymorphism of IL17F (rs763780 and rs2397084) among the families affected by arthritis. Demographic data and blood samples were collected from the families with at least one affected offspring with arthritis. Analysis of the IL17F gene polymorphism was performed by the digestion of DNA with NlaIII and AvaII. The results showed that IL17F rs763780 (AA, AG and GG genotypes) and rs2397084 (AA, AG …


Frontotemporal Dementia Nonsense Mutation Of Progranulin Rescued By Aminoglycosides, Lisha Kuang, Kei Hashimoto, Eric J. Huang, Matthew S. Gentry, Haining Zhu Jan 2020

Frontotemporal Dementia Nonsense Mutation Of Progranulin Rescued By Aminoglycosides, Lisha Kuang, Kei Hashimoto, Eric J. Huang, Matthew S. Gentry, Haining Zhu

Molecular and Cellular Biochemistry Faculty Publications

Frontotemporal dementia (FTD) is an early onset dementia and is characterized by progressive atrophy of the frontal and/or temporal lobes. FTD is highly heritable with mutations in progranulin accounting for 5-26% of cases in different populations. Progranulin is involved in endocytosis, secretion and lysosomal processes, but its function under physiological and pathological conditions remains to be defined. Many FTD-causing nonsense progranulin mutations contain a premature termination codon (PTC), thus progranulin haploinsufficiency has been proposed as a major disease mechanism. Currently, there is no effective FTD treatment or therapy.

Aminoglycosides are a class of antibiotics that possess a less known function …


A Dedicated Chaperone Mediates The Safe Transfer Of Mitoribosomal Proteins To Their Site Of Assembly, Gabrielle Ashley Hillman May 2019

A Dedicated Chaperone Mediates The Safe Transfer Of Mitoribosomal Proteins To Their Site Of Assembly, Gabrielle Ashley Hillman

Graduate School of Biomedical Sciences Theses and Dissertations

Mitochondrial ribosomes are functionally specialized for the synthesis of several essential inner membrane proteins of the respiratory chain. While remarkable progress has recently been made towards understanding the structure of mitoribosomes, the unique pathways and factors that facilitate their biogenesis remain largely unknown. This dissertation defines the physiological role of an evolutionarily conserved yeast protein called Mam33 in mitochondrial ribosome assembly. The biomedical relevance of this finding stems from the fact that mutations or changes in its expression of the human ortholog p32 result in mitochondrial dysfunction. In human patients, bi-allelic mutations cause severe multisystemic defects in mitochondrial energy metabolism, …


The Zinc Transporter Zipt-7.1 Regulates Sperm Activation In Nematodes, Yanmei Zhao, Chieh-Hsiang Tan, Amber Krauchunas, Andrea Scharf, Nicholas Dietrich, Kurt Warnhoff, Zhiheng Yuan, Marina Druzhinina, Sam Guoping Gu, Long Miao, Andrew Singson, Ronald E Ellis, Kerry Kornfeld Jun 2018

The Zinc Transporter Zipt-7.1 Regulates Sperm Activation In Nematodes, Yanmei Zhao, Chieh-Hsiang Tan, Amber Krauchunas, Andrea Scharf, Nicholas Dietrich, Kurt Warnhoff, Zhiheng Yuan, Marina Druzhinina, Sam Guoping Gu, Long Miao, Andrew Singson, Ronald E Ellis, Kerry Kornfeld

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Sperm activation is a fascinating example of cell differentiation, in which immotile spermatids undergo a rapid and dramatic transition to become mature, motile sperm. Because the sperm nucleus is transcriptionally silent, this transition does not involve transcriptional changes. Although Caenorhabditis elegans is a leading model for studies of sperm activation, the mechanisms by which signaling pathways induce this transformation remain poorly characterized. Here we show that a conserved transmembrane zinc transporter, ZIPT-7.1, regulates the induction of sperm activation in Caenorhabditis nematodes. The zipt-7.1 mutant hermaphrodites cannot self-fertilize, and males reproduce poorly, because mutant spermatids are defective in responding to activating …


Zinc Transporters Ybtx And Znuabc Are Required For The Virulence Of Yersinia Pestis In Bubonic And Pneumonic Plague In Mice, Alexander G. Bobrov, Olga Kirillina, Marina Y. Fosso, Jacqueline D. Fetherston, M. Clarke Miller, Tiva T. Vancleave, Joseph A. Burlison, William K. Arnold, Matthew B. Lawrenz, Sylvie Garneau-Tsodikova, Robert D. Perry Jun 2017

Zinc Transporters Ybtx And Znuabc Are Required For The Virulence Of Yersinia Pestis In Bubonic And Pneumonic Plague In Mice, Alexander G. Bobrov, Olga Kirillina, Marina Y. Fosso, Jacqueline D. Fetherston, M. Clarke Miller, Tiva T. Vancleave, Joseph A. Burlison, William K. Arnold, Matthew B. Lawrenz, Sylvie Garneau-Tsodikova, Robert D. Perry

Microbiology, Immunology, and Molecular Genetics Faculty Publications

A number of bacterial pathogens require the ZnuABC Zinc (Zn2+) transporter and/or a second Zn2+ transport system to overcome Zn2+ sequestration by mammalian hosts. Previously we have shown that in addition to ZnuABC, Yersinia pestis possesses a second Zn2+ transporter that involves components of the yersiniabactin (Ybt), siderophore-dependent iron transport system. Synthesis of the Ybt siderophore and YbtX, a member of the major facilitator superfamily, are both critical components of the second Zn2+ transport system. Here we demonstrate that a ybtX znu double mutant is essentially avirulent in mouse models of bubonic and pneumonic …


Dna Polymerase Zeta-Dependent Mutagenesis: Molecular Specificity, Extent Of Error-Prone Synthesis, And The Role Of Dntp Pools, Olga V. Kochenova Dec 2016

Dna Polymerase Zeta-Dependent Mutagenesis: Molecular Specificity, Extent Of Error-Prone Synthesis, And The Role Of Dntp Pools, Olga V. Kochenova

Theses & Dissertations

Despite multiple DNA repair pathways, DNA lesions can escape repair and compromise normal chromosomal replication, leading to genome instability. Cells utilize specialized low-fidelity Translesion Synthesis (TLS) DNA polymerases to bypass lesions and rescue arrested replication forks. TLS is a highly conserved two-step process that involves insertion of a nucleotide opposite a lesion and extension of the resulting aberrant primer terminus. The first step can be performed by both replicative and TLS DNA polymerases and, because of non-instructive DNA lesions, often results in a nucleotide misincorporation. The second step is almost exclusively catalyzed by DNA polymerase ζ …


The Decapping Scavenger Enzyme Dcs-1 Controls Microrna Levels In Caenorhabditis Elegans, Gabriel Bosse, Stefan Ruegger, Maria Ow, Alejandro Vasquez-Rifo, Evelyne Rondeau, Victor Ambros, Helge Grosshans, Martin Simard Oct 2015

The Decapping Scavenger Enzyme Dcs-1 Controls Microrna Levels In Caenorhabditis Elegans, Gabriel Bosse, Stefan Ruegger, Maria Ow, Alejandro Vasquez-Rifo, Evelyne Rondeau, Victor Ambros, Helge Grosshans, Martin Simard

Victor R. Ambros

In metazoans, microRNAs play a critical role in the posttranscriptional regulation of genes required for cell proliferation and differentiation. MicroRNAs themselves are regulated by a multitude of mechanisms influencing their transcription and posttranscriptional maturation. However, there is only sparse knowledge on pathways regulating the mature, functional form of microRNA. Here, we uncover the implication of the decapping scavenger protein DCS-1 in the control of microRNA turnover. In Caenorhabditis elegans, mutations in dcs-1 increase the levels of functional microRNAs. We demonstrate that DCS-1 interacts with the exonuclease XRN-1 to promote microRNA degradation in an independent manner from its known decapping scavenger …


Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros Oct 2015

Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros

Victor R. Ambros

microRNAs function in diverse developmental and physiological processes by regulating target gene expression at the post-transcriptional level. ALG-1 is one of two Caenorhabditis elegans Argonautes (ALG-1 and ALG-2) that together are essential for microRNA biogenesis and function. Here, we report the identification of novel antimorphic (anti) alleles of ALG-1 as suppressors of lin-28(lf) precocious developmental phenotypes. The alg-1(anti) mutations broadly impair the function of many microRNAs and cause dosage-dependent phenotypes that are more severe than the complete loss of ALG-1. ALG-1(anti) mutant proteins are competent for promoting Dicer cleavage of microRNA precursors and for associating with and stabilizing microRNAs. However, …


Caenorhabditis Elegans Micrornas Of The Let-7 Family Act In Innate Immune Response Circuits And Confer Robust Developmental Timing Against Pathogen Stress, Zhiji Ren, Victor R. Ambros Oct 2015

Caenorhabditis Elegans Micrornas Of The Let-7 Family Act In Innate Immune Response Circuits And Confer Robust Developmental Timing Against Pathogen Stress, Zhiji Ren, Victor R. Ambros

Victor R. Ambros

Animals maintain their developmental robustness against natural stresses through numerous regulatory mechanisms, including the posttranscriptional regulation of gene expression by microRNAs (miRNAs). Caenorhabditis elegans miRNAs of the let-7 family (let-7-Fam) function semiredundantly to confer robust stage specificity of cell fates in the hypodermal seam cell lineages. Here, we show reciprocal regulatory interactions between let-7-Fam miRNAs and the innate immune response pathway in C. elegans. Upon infection of C. elegans larvae with the opportunistic human pathogen Pseudomonas aeruginosa, the developmental timing defects of certain let-7-Fam miRNA mutants are enhanced. This enhancement is mediated by the p38 MAPK innate immune pathway acting …


Micrornas: Genetically Sensitized Worms Reveal New Secrets, Victor Ambros Oct 2015

Micrornas: Genetically Sensitized Worms Reveal New Secrets, Victor Ambros

Victor R. Ambros

Why do many microRNA gene mutants display no evident phenotype? Multiply mutant worms that are selectively impaired in genetic regulatory network activities have been used to uncover previously unknown functions for numerous Caenorhabditis elegans microRNAs.


Epigenetic Dominance Of Prion Conformers, Eri Saijo, Hae-Eun Kang, Jifeng Bian, Kristi G. Bowling, Shawn Browning, Sehun Kim, Nora Hunter, Glenn C. Telling Oct 2013

Epigenetic Dominance Of Prion Conformers, Eri Saijo, Hae-Eun Kang, Jifeng Bian, Kristi G. Bowling, Shawn Browning, Sehun Kim, Nora Hunter, Glenn C. Telling

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Although they share certain biological properties with nucleic acid based infectious agents, prions, the causative agents of invariably fatal, transmissible neurodegenerative disorders such as bovine spongiform encephalopathy, sheep scrapie, and human Creutzfeldt Jakob disease, propagate by conformational templating of host encoded proteins. Once thought to be unique to these diseases, this mechanism is now recognized as a ubiquitous means of information transfer in biological systems, including other protein misfolding disorders such as those causing Alzheimer's and Parkinson's diseases. To address the poorly understood mechanism by which host prion protein (PrP) primary structures interact with distinct prion conformations to influence pathogenesis, …


Array-Based Genomic Diversity Measures Portray Mus Musculus Phylogenetic And Genealogical Relationships, And Detect Genetic Variation Among C57bl/6j Mice And Between Tissues Of The Same Mouse, Susan T. Eitutis Jul 2013

Array-Based Genomic Diversity Measures Portray Mus Musculus Phylogenetic And Genealogical Relationships, And Detect Genetic Variation Among C57bl/6j Mice And Between Tissues Of The Same Mouse, Susan T. Eitutis

Electronic Thesis and Dissertation Repository

Mouse models lack affordable genomic technologies slowing the identification of candidate variants contributing to complex phenotypes. The Mouse Diversity Genotyping Array (MDGA) is a low cost, high-resolution platform permitting genomic diversity assessment. Using a validated list of >500,000 single nucleotide polymorphisms (SNPs), we applied the first comprehensive analysis of SNP differences to detect genetic distance across 362 Mus musculus samples. Genetic distance measured between distantly and closely related mice correlates with known phylogeny and genealogy. Variation detected between C57BL/6J mice is consistent with previous reports of variants within this strain. Putative genetic variation detected between and within tissues indicates somatic …


Mutation And Complementation Of A Cellulose Synthase (Cesa) Gene, Ahmed Y. El-Araby May 2012

Mutation And Complementation Of A Cellulose Synthase (Cesa) Gene, Ahmed Y. El-Araby

Senior Honors Projects

Cellulose is a carbohydrate polymer that is composed of repeating glucose subunits. Being the most abundant organic compound in the biosphere and comprising a large percentage of all plant biomass, cellulose is extremely plentiful and has a significant role in nature. Cellulose is present in plant cell walls, in commercial products such as those made from wood or cotton, and is of interest to the biofuel industry as a potential alternative fuel source. Although indigestible by humans, cellulose is nutritionally valuable, serving as a dietary fiber. Because of its ubiquity and importance in many areas, studying cellulose will prove to …


A Feedback Circuit Involving Let-7-Family Mirnas And Daf-12 Integrates Environmental Signals And Developmental Timing In Caenorhabditis Elegans, Christopher M. Hammell, Xantha Karp, Victor R. Ambros Nov 2009

A Feedback Circuit Involving Let-7-Family Mirnas And Daf-12 Integrates Environmental Signals And Developmental Timing In Caenorhabditis Elegans, Christopher M. Hammell, Xantha Karp, Victor R. Ambros

Victor R. Ambros

Animal development is remarkably robust; cell fates are specified with spatial and temporal precision despite physiological and environmental contingencies. Favorable conditions cause Caenorhabditis elegans to develop rapidly through four larval stages (L1-L4) to the reproductive adult. In unfavorable conditions, L2 larvae can enter the developmentally quiescent, stress-resistant dauer larva stage, enabling them to survive for prolonged periods before completing development. A specific progression of cell division and differentiation events occurs with fidelity during the larval stages, regardless of whether an animal undergoes continuous or dauer-interrupted development. The temporal patterning of developmental events is controlled by the heterochronic genes, whose products …


H2-M3-Restricted Cd8+ T Cells Are Not Required For Mhc Class Ib-Restricted Immunity Against Listeria Monocytogenes, Sarah E. F. D'Orazio, Christine A. Shaw, Michael N. Starnbach Feb 2006

H2-M3-Restricted Cd8+ T Cells Are Not Required For Mhc Class Ib-Restricted Immunity Against Listeria Monocytogenes, Sarah E. F. D'Orazio, Christine A. Shaw, Michael N. Starnbach

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Studies using major histocompatibility complex (MHC)-Ia–deficient mice have shown that MHC-Ib–restricted CD8+ T cells can clear infections caused by intracellular pathogens such as Listeria monocytogenes. M3-restricted CD8+ T cells, which recognize short hydrophobic N-formylated peptides, appear to comprise a substantial portion of the MHC-Ib–restricted T cell response in the mouse model of L. monocytogenes infection. In this study, we isolated formyltransferase (fmt) mutant strains of L. monocytogenes that lacked the ability to add formyl groups to nascent polypeptides. These fmt mutant Listeria strains did not produce antigens that could be recognized by M3-restricted T …