Open Access. Powered by Scholars. Published by Universities.®

Food Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Food Chemistry

Clove Essential Oil And Nanoclays-Based Active Food Packaging, Kalpani Y. Perera, Shubham Sharma, Amit K. Jaiswal, Swarna Jaiswal Dec 2022

Clove Essential Oil And Nanoclays-Based Active Food Packaging, Kalpani Y. Perera, Shubham Sharma, Amit K. Jaiswal, Swarna Jaiswal

Articles

Active food packaging materials enhance the shelf-life of food products while reducing food waste. The current study aims to develop a biodegradable active food packaging material. The food packaging material was developed with the incorporation of clove essential oil, sodium alginate, gelatin, and nanoclay films were prepared. The influences of nanoclay and clove on the surface, optical, mechanical, chemical, barrier, and pH-indicating properties were studied. The lightness and yellowness increased by 1.06 folds and 3.34 folds when compared to clove (control), respectively. The UV barrier property 0.08±0.01nm in all films, while 8.37 folds reduction in transparency has been observed as …


Nanoclays And Curcumin Based Food Packaging Material For Intelligent Food Packaging Applications, Kalpani Y. Perera, Swarna Jaiswal, Amit K. Jaiswal, Shubham Sharma Dec 2022

Nanoclays And Curcumin Based Food Packaging Material For Intelligent Food Packaging Applications, Kalpani Y. Perera, Swarna Jaiswal, Amit K. Jaiswal, Shubham Sharma

Articles

Bionanocomposite packaging eco-friendly alternatives with enhanced characteristics. This study aimed to develop a bionanocomposite intelligent packaging. Sodium alginate, gelatin, Curcumin (Cur), glycerol, and Nanoclay (NC) films were prepared. The influences of nanoclay and curcumin on the surface, optical, mechanical, chemical, barrier, and pH-indicating properties were studied. The results showed that the lightness of films was reduced by 1.28 folds compared to NC (control) film, while the yellowness of films increased by 5.82 folds. Film transparency was reduced by 9.3 folds and a 3.46 folds increase in UV barrier properties was observed compared to NC (control) film. The highest tensile strength …


Biodegradable Active Bio-Nanocomposite Film For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal Nov 2022

Biodegradable Active Bio-Nanocomposite Film For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal

Articles

The increased environmental pollution has led to finding sustainable solutions for non-renewable plastic-based food packaging materials. Thus, the use of biomaterial-based packaging material has become an immense trend. This work aims at developing an antimicrobial biodegradable chitosanalginate bio-nano composite film with TiO2 nanoparticle (NPs) for food packaging applications. The film was developed by a solution casting method. The chemical, mechanical, thermal, barrier, antimicrobial, and biodegradable properties of the packaging films were evaluated. Packaging studies were performed for 15 days for cherry tomatoes. The designed packaging material had enhanced the mechanical properties with a significantly (p < 0.05) higher tensile strength of 15.76 folds and 2 fold higher elongation at break. The UV barrier properties increased by 88.6%, while the film transparency decreased by 87.23%. Molecular interaction of N-H covalent bonds was observed between alginate and chitosan together with TiO2 NPs. The developed bio-nano composite film showed antimicrobial activity against foodborne pathogens E. coli, S. aureus, S. typhi, and L. monocytogene with a log reduction of 7.08, 7.28, 6.04 & 6.02 log CFU/ml respectively at 24 hours incubation period. The film was completely biodegraded and a weight loss of 89.06% was observed in bio-nanocomposite film during the 3 months. Shelf-life estimation of cherry tomato using developed packaging films showed an increase in the shelf-life up to 8 days with stable pH, total soluble solids, and weight with no bacterial growth when packaged with prepared film. Owing to their improved mechanical, UV barrier, antibacterial, and biodegradability, the prepared active bio-nano composite packaging films could be considered a potential candidate for fruit packaging.


Sodium Alginate, Nanoclay And Curcumin Based Food Packaging Material For Intelligent Food Packaging Applications, Kalpani Y. Perera, Máille Hopkins, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal Nov 2022

Sodium Alginate, Nanoclay And Curcumin Based Food Packaging Material For Intelligent Food Packaging Applications, Kalpani Y. Perera, Máille Hopkins, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal

Articles

Bionanocomposite food packaging contains materials of biological origin which display high-performance activity when compared to biopolymers and are eco-friendly alternatives to conventional packaging materials. Intelligent packaging monitors the condition of the food or environment surrounding the food and communicates changes to the consumer. This study aimed to develop a bionanocomposite intelligent packaging material by utilising sodium alginate, nanoclay and curcumin. Sodium alginate (2 W/V% SA) film incorporated with 0.3 W/V% curcumin (Cur), glycerol, and nanoclay (NC) in various concentrations (0, 0.5, 1 and 2 W/V %) was prepared using the solvent casting method. The influences of nanoclay and curcumin on …


An Active Biodegradable Layer-By-Layer Film Based On Chitosan-Alginate-Tio2 For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Shiviani Pathania, Amit K. Jaiswal, Swarma Jaiswal Oct 2022

An Active Biodegradable Layer-By-Layer Film Based On Chitosan-Alginate-Tio2 For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Shiviani Pathania, Amit K. Jaiswal, Swarma Jaiswal

Articles

This work aims at developing biodegradable active chitosan-alginate layer-by-layer bio-nanocomposite film with TiO2NPs using the solvent casting method followed by CaCl2 crosslinking for food packaging applications. The developed films enhanced the tensile strength and elongation at break by 14.76 and 2 folds (p < 0.05) respectively. The UV barrier properties of CH-SA-0.3%TiO2 film increased by 88.6%, while the film transparency decreased by 87.23%. All films showed antimicrobial activity against foodborne pathogens E. coli, S. aureus, S. typhi, and L. monocytogene. The film with 0.1%TiO2 showed the complete killing of gram-positive bacteria. The CH-SA-0.1%TiO2 film was completely biodegraded during the …


Bio-Based Food Packaging Material For Intelligent Food Packaging Applications For Chicken Fillets, Kalpani Y. Perera, Amit K. Jaiswal, Swarma Jaiswal, Shubham Sharma Sep 2022

Bio-Based Food Packaging Material For Intelligent Food Packaging Applications For Chicken Fillets, Kalpani Y. Perera, Amit K. Jaiswal, Swarma Jaiswal, Shubham Sharma

Articles

Bionanocomposite packaging is made up of bio- based materials that have high performance activity and are ecologically sustainable alternatives to packaging made of synthetic polymers. Intelligent packaging retains track of the state of the food and the environment in which it is stored, and communicates relevant changes to the consumer through visualization or other methods. The aim of this study was to develop a bionanocomposite intelligent packaging material by utilising sodium alginate, gelatin, nanoclay and curcumin. Sodium alginate, gelatin film incorporated with Curcumin (Cur), and Nanoclay (NC) in various concentrations (0% W/V, 0.5% W/V, 1% W/V and 1. 5% W/V) …


Biodegradable Active Bio-Nanocomposite Film For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal May 2022

Biodegradable Active Bio-Nanocomposite Film For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal

Articles

The increased environmental pollution has led to finding sustainable solutions for non-renewable plastic-based food packaging materials. Thus, the use of biomaterial-based packaging material has become an immense trend. This work aims at developing an antimicrobial biodegradable chitosan-alginate bio-nano composite film with TiO2 nanoparticle (NPs) for food packaging applications. The film was developed by a solution casting method. The chemical, mechanical, thermal, barrier, antimicrobial, and biodegradable properties of the packaging films were evaluated. Packaging studies were performed for 15 days for cherry tomatoes. The designed packaging material had enhanced the mechanical properties with a significantly (p < 0.05) higher tensile strength of 15.76 folds and 2 fold higher elongation at break. The UV barrier properties increased by 88.6%, while the film transparency decreased by 87.23%. Molecular interaction of N-H covalent bonds was observed between alginate and chitosan together with TiO2 NPs. The developed bio-nano composite film showed antimicrobial activity against foodborne pathogens E. coli, S. aureus, S. typhi, and L. monocytogene with a log reduction of 7.08, 7.28, 6.04 & 6.02 log CFU/ml respectively at 24 hours incubation period. The film was completely biodegraded and a weight loss of 89.06% was observed in bio-nanocomposite film during the 3 months. Shelf-life estimation of cherry tomato using developed packaging films showed an increase in the shelf-life up to 8 days with stable pH, total soluble solids, and weight with no bacterial growth when packaged with prepared film. Owing to their improved mechanical, UV barrier, antibacterial, and biodegradability, the prepared active bio-nano composite packaging films could be considered a potential candidate for fruit packaging.


Biodegradable Nanocomposite Multifunctional Packaging Film For Fruits, Kalpani Y. Perera, Shubham Sharma, Dileswar Pradhan, Amit Jaiswal, Swarna Jaiswal Sep 2021

Biodegradable Nanocomposite Multifunctional Packaging Film For Fruits, Kalpani Y. Perera, Shubham Sharma, Dileswar Pradhan, Amit Jaiswal, Swarna Jaiswal

Articles

Biopolymers have been used in food packaging in recent years due to high pollution rates and decreased biodegradation of synthetic polymers. Chitosan (CH) and Sodium alginate (SA) are both biodegradable biopolymers with excellent film forming capability. TiO2 nanoparticles have high mechanical strength, degradation ability and antimicrobial properties, which are beneficial in food packaging. The aim of the current work is to develop the biodegradable multifunctional nanocomposite film for fruit (i.e., Pear) packaging applications. Bionanocomposite film was prepared by solvent casting method using CH-SA and various concentrations of TiO2. The multifunctional properties such as UV barrier, thermal, water retention, mechanical, chemical, …