Open Access. Powered by Scholars. Published by Universities.®

Desert Ecology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Desert Ecology

Interagency Lake Mead And Las Vegas Wash Monitoring Program: Standard Operating Procedures Manual, Bureau Of Reclamation, City Of Henderson Water Reclamation Facility, City Of Las Vegas Water Pollution Control Facility, Clark County Sanitation District, Nevada, Southern Nevada Water Authority Oct 1998

Interagency Lake Mead And Las Vegas Wash Monitoring Program: Standard Operating Procedures Manual, Bureau Of Reclamation, City Of Henderson Water Reclamation Facility, City Of Las Vegas Water Pollution Control Facility, Clark County Sanitation District, Nevada, Southern Nevada Water Authority

Publications (WR)

A number of agencies sample Lake Mead and the Las Vegas Wash on a routine basis at several locations. In order to share and properly interpret the data, the Bureau of Reclamation, Southern Nevada Water Authority and the three Wastewater Treatment Facilities (City of Las Vegas, Clark County Sanitation District and City of Henderson) formed a committee to examine sampling and analytical protocols and to share information with the goal of maximizing the data quality. The group first met in April 1997.

It was agreed that an effort should be made to discuss and compare specific sampling and analytical techniques …


Las Vegas Wash Water Quality Monitoring Program: 1996 Report Of Findings, Richard A. Roline, James J. Sartoris, U.S. Bureau Of Reclamation, U.S. Geological Survey Apr 1997

Las Vegas Wash Water Quality Monitoring Program: 1996 Report Of Findings, Richard A. Roline, James J. Sartoris, U.S. Bureau Of Reclamation, U.S. Geological Survey

Publications (WR)

Las Vegas Wash, a natural wash east of the city of Las Vegas, Nevada, carries stormwater, groundwater drainage, and sewage effluent from three sewage treatment plants to Lake Mead. The Wash provides nearly the only surface water outlet for the entire 2,193 mi2 of Las Vegas Valley. A drainage area of 1,586 mi2 contributes directly to the Wash through surface flow which is channeled to Las Vegas Bay of Lake Mead, while drainage of the remaining 607 mi2 is presumably subsurface and may drain toward Las Vegas Wash.

In the 1930's and 1940's, sewage treatment plants were …


The Influence Of The Wastewater Drainage From The Las Vegas Valley On The Limnology Of Boulder Basin, Lake Mead, Nevada-Arizona, James F. Labounty, Michael J. Horn, Bureau Of Reclamation Jan 1997

The Influence Of The Wastewater Drainage From The Las Vegas Valley On The Limnology Of Boulder Basin, Lake Mead, Nevada-Arizona, James F. Labounty, Michael J. Horn, Bureau Of Reclamation

Publications (WR)

Lake Mead, Colorado River, Arizona-Nevada, is one of the most heavily used reservoirs in the western United States, providing abundant recreational opportunities as well as downstream domestic and agricultural water for over 22 million users. Based on average nutrient levels and productivity, Lake Mead is classified as mildly mesotrophic. The interflow of the Colorado River dominates the limnology of much of the 106 km-long reservoir, and may still be identified at Hoover Dam under certain conditions. The lower basin of Lake Mead ending at Hoover Dam is known as Boulder Basin and is near the Las Vegas metropolitan area. Las …


Report Of Significant Findings--Las Vegas Bay/Boulder Basin Investigations, James F. Labounty, Michael Horn, Bureau Of Reclamation Apr 1996

Report Of Significant Findings--Las Vegas Bay/Boulder Basin Investigations, James F. Labounty, Michael Horn, Bureau Of Reclamation

Publications (WR)

Field sampling was carried out between 0830 and 1500 beginning at the confluence of Las Vegas Wash and the Inner Las Vegas Bay. Ten (10) locations were sampled, each in a similar manner. Locations of sampling stations are in line from the Wash-Bay confluence to a point midway between Saddle and Black Islands. In addition, sampling was done at a location midway between Sentinel Island and the base of Fortification Hill, and at the buoy line in front of Hoover Dam. Sampling stations are labeled from LV01, at Wash-Bay confluence, to LV17 at Hoover Dam. A significant data collection point …


Baseline Water Quality Data Inventory And Analysis: Lake Mead National Recreation Area, Volume I Of Ii, National Park Service Dec 1994

Baseline Water Quality Data Inventory And Analysis: Lake Mead National Recreation Area, Volume I Of Ii, National Park Service

Publications (WR)

This document presents the results of surface-water-quality data retrievals for Lake Mead National Recreation Area (LAME) from five of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) database management system; (2) River Reach File (RF3); (3) Industrial Facilities Discharge (IFD); (4) Drinking Water Supplies (DRINKS); and (5) Flow Gages (GAGES). This document is one product resulting from a cooperative contractual endeavor between the National Park Service's Servicewide Inventory and Monitoring Program, the National Park Service's Water Resources Division (WRD), and Horizon Systems Corporation to retrieve, format, and analyze water quality data for all units …


Southern Nevada Effluent Wetlands: A Proposed Cooperative Venture Between The Bureau Of Reclamation & City Of Las Vegas, Bureau Of Reclamation Nov 1992

Southern Nevada Effluent Wetlands: A Proposed Cooperative Venture Between The Bureau Of Reclamation & City Of Las Vegas, Bureau Of Reclamation

Publications (WR)

Throughout North America there is a growing interest in constructed wetlands, both as relatively inexpensive, low-maintenance systems for removing nutrients from wastewater, and as a means of using municipal wastewater to enhance wildlife habitat and create public use opportunities. Because wetlands appear to have good potential as a component in the overall management of scarce water resources, the Bureau of Reclamation (Reclamation) has undertaken several cooperative research and demonstration projects to evaluate their effectiveness in a variety of local environments.

While a number of projects have demonstrated that wetlands can be beneficially employed to improve water quality, few such projects …


Environmental Assessment Of Las Vegas Wash And Lake Mead Artificial Wetlands Demonstration Project, John R. Baker, R. M. Gersberg, U.S. Environmental Protection Agency Feb 1988

Environmental Assessment Of Las Vegas Wash And Lake Mead Artificial Wetlands Demonstration Project, John R. Baker, R. M. Gersberg, U.S. Environmental Protection Agency

Publications (WR)

The effective use of artificial wetlands for treatment of municipal wastewater is well documented; however, design and economic data for artificial wetlands development are limited (Gersberg et al., 1984a). This is due partly to regional differences in climate, soils, and vegetation and partly to the desired waste treatment. As a result, specific treatment levels and cost benefits relative to the use of an artificial wetlands for a particular site cannot be evaluated adequately without a pilot demonstration project. Las Vegas Wash receives sewage effluent from the Las Vegas metropolitan area and has been designated as a wetlands community park. Las …


Las Vegas Wash And Lake Mead Proposed Water Quality Standards: Revisions And Rationale, State Of Nevada: Division Of Environmental Protection May 1987

Las Vegas Wash And Lake Mead Proposed Water Quality Standards: Revisions And Rationale, State Of Nevada: Division Of Environmental Protection

Publications (WR)

Rationale of review and for proposed changes to the Nevada Pollution Control Regulations (NAC 445.1354, 445.1355, 445.1356, 455.1367, 445.1352, 445.1353, 445.1350, 445.1351) before the State Environmental Commission on June 23 and 24, 1987.


A Proposal To Fertilize The Overton Arm And Gregg Basin Areas Of Lake Mead, Larry J. Paulson Nov 1984

A Proposal To Fertilize The Overton Arm And Gregg Basin Areas Of Lake Mead, Larry J. Paulson

Publications (WR)

Several limnological studies have been conducted in Lake Mead during the past decade. The recent studies clearly show that most of Lake Mead is deficient in nutrients, especially phosphorus, and very low in productivity. The reservoir-wide average total phosphorus concentration for 1981 - 1982 was only 9 mg/m3. This is below levels found In most oligotrophic lakes and reservoirs. Algal biomass, as measured by chlorophyll-a, averaged only 1.5 mg/m3. That also places Lake Mead in the oligotrophic range. Transparency, as measured by a Secchi disc, averaged 9-5 m in Lake Mead during 1981-1982. That far exceeds …


Las Vegas Wash Multispectral Scanner Survey, T. H. Mace, M. V. Olsen, Environmental Protection Agency Feb 1984

Las Vegas Wash Multispectral Scanner Survey, T. H. Mace, M. V. Olsen, Environmental Protection Agency

Publications (WR)

At the request of the U.S. Bureau of Reclamation, Boulder City, Nevada, the U.S. Environmental Protection Agency's Environmental Monitoring Systems Laboratory at Las Vegas collected multispectral scanner imagery of Las Vegas Wash on October 1, 1982.

A combined maximum likelihood classification and editing procedure was used to classify the multispectral scanner imagery into 12 categories of land cover. The classification identified four categories of marsh vegetation, one category of riparian, two categories of mixed scrub, and two desert categories. Turbid water and cultivated land formed an "other" category. Area tabulations were formed by georeferencing the classification to the Universal Transverse …


Water Quality Trends In The Las Vegas Wash Wetlands, F. A. Morris, L. J. Paulson Jan 1983

Water Quality Trends In The Las Vegas Wash Wetlands, F. A. Morris, L. J. Paulson

Publications (WR)

The Las Vegas Wash is a wetlands ecosystem that acts to buffer the effects of wastewater discharges on the receiving waters of Lake Mead. The wash is the terminus for the 4,144 km2 Las Vegas Valley drainage basin, emptying into Las Vegas Bay of Lake Mead (Colorado River). It is in the northern Mojave desert, which receives an average of only 10 cm of rainfall annually. The Las Vegas Wash is technically an artificial wetland supported almost entirely by the perennial flows from sewage treatment plants. These flows contribute an average of 3-7 t of nutrients (nitrogen and phosphorus) and …


Distribution Of Stream Pollution In Lake Water, Richard W. Tew, Samuel S. Egdorf, James E. Deacon May 1976

Distribution Of Stream Pollution In Lake Water, Richard W. Tew, Samuel S. Egdorf, James E. Deacon

Publications (WR)

Wastewater effluent-laden waters from Las Vegas Wash (LVW) form a density current that may be detected in Boulder Basin of Lake Mead at considerable distances from the wash estuary. This led to the suspicion that water from the inflowing stream [40 mgd (1.5 X 105 cu m/day)] might not be rapidly diluted in the enormous volume of the lake [19 mil acre-ft (2.3 X 1010 cu m)], but might persist as a recognizable entity to the vicinity of the intake of a major water source for populous Clark County, Nev.

Because of the detection sensitivity implicit in the …


Seasonal And Spatial Variation In Primary Productivity In Boulder Basin, Lake Mead, Clark County, Nevada, Isamu Aoki May 1975

Seasonal And Spatial Variation In Primary Productivity In Boulder Basin, Lake Mead, Clark County, Nevada, Isamu Aoki

Publications (WR)

The 14C light and dark bottle technique for measurement of primary production was utilized as a means of assessing the amount of inorganic carbon being converted Into organic form by the photosynthesis of phytoplankton populations In the Boulder Basin of Lake Mead.

Spatial and time series changes of productivity levels observed at eight sampling locations within Boulder Basin Indicate that the Influence of treated municipal arts' industrial effluent flowing into Les Vegas Bay is contributing high levels of available nutrients at Las Vegas Wash Inlet to cause productivity to approximate those levels associated with polluted waters.

Productivity levels at …


Phytoplankton Successions And Lake Dynamics In Las Vegas Bay, Lake Mead, Nevada, Ervon R. Koening, Richard W. Tew, James E. Deacon Oct 1972

Phytoplankton Successions And Lake Dynamics In Las Vegas Bay, Lake Mead, Nevada, Ervon R. Koening, Richard W. Tew, James E. Deacon

Publications (WR)

Phytoplankton successions, applications of the general growth equation, and physical measurements have been employed to investigate events occurring at the interface between industrial and sewage effluent contained in Las Vegas Wash and the waters of Lake Mead, Nevada. The data indicate that the entering waters tend to form a density current interrupted at intervals by dynamic effects generated in the lake. The dynamic relationships described here for the spring months suggest that a much more thorough understanding of physical, chemical and biological interactions is necessary to permit solution of the numerous problems of Las Vegas Bay discussed or alluded to …


Report On Water Pollution Problems In Las Vegas Wash And Las Vegas Bay, Environmental Protection Agency Nov 1971

Report On Water Pollution Problems In Las Vegas Wash And Las Vegas Bay, Environmental Protection Agency

Publications (WR)

This report was prepared by the Federal Water- Quality Administration, Pacific Southwest Region, now the Environmental Protection Agency (EPA), Region IX, at the request of the State of Nevada, Department of Health, Welfare, and rehabilitation. In a letter, dated December 5, 1969, this agency asked for technical assistance, as authorized by the Federal Water Pollution Control Act, in developing discharge standards appropriate for Las Vegas Bay, Lake Mead, and the Lower Colorado River. The subsequent study was performed by EPA from January through August, 1970. The establishment of Nevada State Water Quality Standards for these waters will enable responsible officials …


The Effect Of Las Vegas Wash Effluent Upon The Water Quality In Lake Mead, D. A. Hoffman, P. R. Tramutt, F. C. Heller, Bureau Of Reclamation Jan 1971

The Effect Of Las Vegas Wash Effluent Upon The Water Quality In Lake Mead, D. A. Hoffman, P. R. Tramutt, F. C. Heller, Bureau Of Reclamation

Publications (WR)

This study developed from observations made during an earlier study on Lake Mead which was reported in CHE-70, Water Quality Study of Lake Mead. Results from that study indicated that poor-quality water was flowing into the Las Vegas Bay reach of Boulder Basin, Lake Mead. Also reports of deteriorating water quality, resulting in taste and odors in domestic water supplies taken from Boulder Basin as well as a reduction in the attractiveness of Las Vegas Bay for recreational uses caused by aquatic plants and algae blooms, indicated a need for a concentrated study concerning the effects of flows from Las …