Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Drosophila

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 40

Full-Text Articles in Cell Biology

Ras/Mapk Signaling Mediates Adipose Tissue Control Of Ovarian Germline Survival And Ovulation In Drosophila Melanogaster, Tancia Bradshaw, Chad Simmons, Rachael Ott, Alissa Richmond Armstrong Feb 2024

Ras/Mapk Signaling Mediates Adipose Tissue Control Of Ovarian Germline Survival And Ovulation In Drosophila Melanogaster, Tancia Bradshaw, Chad Simmons, Rachael Ott, Alissa Richmond Armstrong

Faculty Publications

From insects to humans, oogenesis is tightly linked to nutritional input, yet little is known about how whole organism physiology matches dietary changes with oocyte development. Considering that diet-induced adipose tissue dysfunction is associated with an increased risk for fertility problems, and other obesity-associated pathophysiologies, it is critical to decipher the cellular and molecular mechanisms linking adipose nutrient sensing to remote control of the ovary and other tissues. Our previous studies in Drosophila melanogaster have shown that amino acid sensing, via the amino acid response pathway and mTOR-mediated signaling function within adipocytes to control germline stem cell maintenance and ovulation, …


Effects Of Osmotic Stress On Oxygen Consumption Of Drosophila Cells (Kc167), Ali A. Ahmed, Rajib Hassan, Michael A. Menze Sep 2023

Effects Of Osmotic Stress On Oxygen Consumption Of Drosophila Cells (Kc167), Ali A. Ahmed, Rajib Hassan, Michael A. Menze

The Cardinal Edge

This article investigates the effect of osmotic stress on a drosophila cell line called Kc167.

The embryonic-derived fly (Drosophila melanogaster) cell line, Kc-167, was employed as a model for water-stress sensitivity in Arthropods. Like mammalian cells, cells derived from the fruit fly contain the same basic set of membranous components found in all eukaryotic cells. A series of experiments were conducted to characterize the mitochondrial repones of Kc167 cells to water stress. Precisely, the oxygen flux in a sealed respirometer chamber containing Kc167 cells was measured under hyperosmotic and control conditions. Mitochondrial uncouplers were used in some experiments for intact …


Regulation Of The Wnt/Wingless Receptor Lrp6/Arrow By The Deubiquitylating Complex Usp46, Zachary T. Spencer Jun 2023

Regulation Of The Wnt/Wingless Receptor Lrp6/Arrow By The Deubiquitylating Complex Usp46, Zachary T. Spencer

Dartmouth College Ph.D Dissertations

The evolutionarily conserved Wnt/Wingless signal transduction pathway is critical for the proper development of all animals and implicated in numerous diseases in adulthood. Upon binding of the Wnt/Wingless ligand, a cascade of events culminates in inactivation of the destruction complex, a negative regulator of the pathway, and the subsequent formation of singalosomes which mediate pathway activation. A critical component of signalosome formation is the Wnt/Wingless receptor LRP6/Arrow. Upon canonical pathway activation, LRP6/Arrow undergoes activation via phosphorylation by several kinases and complexes with another Wnt/Wingless receptor Frizzled, along with several cytoplasmic components. While many studies have investigated the regulatory mechanisms of …


An In-Depth Study Of Border Cell Migration Within Drosophila Melanogaster, Leif R. Verace May 2023

An In-Depth Study Of Border Cell Migration Within Drosophila Melanogaster, Leif R. Verace

Honors Capstones

Cell migration plays a key role in many biological processes including embryonic development, tissue morphogenesis, and the metastasis of cancer cells; thus, understanding how this behavior works is highly important. To study cell migration, we use the process of border cell (BC) migration in Drosophila melanogaster, which sees a cluster of cells migrate through a multicellular structure known as the egg chamber found in the Drosophila ovary. Here, I will describe my results in studying the role of a particular kinesin-like gene, CG14535, in BC migration. Through analysis of a mutant for this gene (labelled KC53), RNAi …


Validating A New In Vivo Model To Study Als, Izabela J. Cimachowska May 2023

Validating A New In Vivo Model To Study Als, Izabela J. Cimachowska

Student Theses and Dissertations

Buildup of oxidative stress and mitochondrial dysfunction are well known characteristics of both sporadic and hereditary amyotrophic lateral sclerosis (ALS). While both forms of the disease seem to arise from common cellular dysfunction, the genetic disease is studied to a much greater extent. Engineering novel animal models of the sporadic form of the disease is crucial for development of druggable targets to treat ALS and understand the underlying mechanisms. Interestingly, accumulation of oxidative stress by exacerbated emission of reactive oxygen species (ROS) from presynaptic mitochondria is a hallmark of both hereditary and sporadic ALS. Previous work by our laboratory showed …


The Role Of Cort And Anaphase Promoting Complex/Cyclosome (Apc/C) In Drosophila Sex Determination And Meiosis, Abuzar Sikander Malik Jan 2023

The Role Of Cort And Anaphase Promoting Complex/Cyclosome (Apc/C) In Drosophila Sex Determination And Meiosis, Abuzar Sikander Malik

Electronic Theses and Dissertations

The E3 ubiquitin ligase, APC/C, is essential for the completion cell cycle; along with its co-activators it allows mitotic exit and maintenance of G1. APC/C marks various substrates with ubiquitin chains; marked substrates are subsequently destroyed via the 26S proteasome pathway. Cort is a Drosophila female meiosis specific activator of APC/C. Cort works within meiosis in conjunction with Fzy to mediate Securin and cyclin destruction. A C-terminal IR-tail motif and a N-terminal C-box support Cort-APC/C interaction, whereas short motifs like D-box and KEN-box on the target protein impart substrate recognition to Cort. Cort expression is tightly controlled in the female …


Regulation Of Tissue Mechanics And Adherens Junctions By Small Gtpase Rhoa During Drosophila Embryogenesis, Hanqing Guo Nov 2022

Regulation Of Tissue Mechanics And Adherens Junctions By Small Gtpase Rhoa During Drosophila Embryogenesis, Hanqing Guo

Dartmouth College Ph.D Dissertations

Actomyosin contractility plays an important role at both the cell and tissue level during developments. In this study, we developed an optogenetic tool that can acutely inhibit actomyosin contractility by targeting its main activator Rho1. This optogenetic tool can achieve myosin inhibition within one minute and thus enable further dissection of actomyosin function in development. In my first two projects, I used Drosophila mesoderm invagination (also known as ventral furrow formation) as a model to study epithelial folding, a fundamental mechanism for constructing complex 3D tissues. Apical constriction mediated by actomyosin contractility is a common mechanism for epithelial folding. However, …


Unbiased Automated Quantitation Of Ros Signals In Live Retinal Neurons Of Drosophila Using Fiji/Imagej, Prajakta Deshpande, Neha Gogia, Anuradha Venkatakrishnan Chimata, Amit Singh Aug 2021

Unbiased Automated Quantitation Of Ros Signals In Live Retinal Neurons Of Drosophila Using Fiji/Imagej, Prajakta Deshpande, Neha Gogia, Anuradha Venkatakrishnan Chimata, Amit Singh

Biology Faculty Publications

Numerous imaging modules are utilized to study changes that occur during cellular processes. Besides qualitative (immunohistochemical) or semiquantitative (Western blot) approaches, direct quantitation method(s) for detecting and analyzing signal intensities for disease(s) biomarkers are lacking. Thus, there is a need to develop method(s) to quantitate specific signals and eliminate noise during live tissue imaging. An increase in reactive oxygen species (ROS) such as superoxide (O2•-) radicals results in oxidative damage of biomolecules, which leads to oxidative stress. This can be detected by dihydroethidium staining in live tissue(s), which does not rely on fixation and helps prevent stress on tissues. However, …


A Micro-Optic Stalk (Muos) System To Model The Collective Migration Of Retinal Neuroblasts, Stephanie Zhang, Miles Markey, Caroline D. Pena, Tadmiri Venkatesh, Maribel Vasquez Mar 2020

A Micro-Optic Stalk (Muos) System To Model The Collective Migration Of Retinal Neuroblasts, Stephanie Zhang, Miles Markey, Caroline D. Pena, Tadmiri Venkatesh, Maribel Vasquez

Publications and Research

Contemporary regenerative therapies have introduced stem-like cells to replace damaged neurons in the visual system by recapitulating critical processes of eye development. The collective migration of neural stem cells is fundamental to retinogenesis and has been exceptionally well-studied using the fruit fly model of Drosophila Melanogaster. However, the migratory behavior of its retinal neuroblasts (RNBs) has been surprisingly understudied, despite being critical to retinal development in this invertebrate model. The current project developed a new microfluidic system to examine the collective migration of RNBs extracted from the developing visual system of Drosophila as a model for the collective motile processes …


The Effect Of Ph On Synaptic Transmission At The Neuromuscular Junction In Drosophila Melanogaster, Catherine Elizabeth Stanley Jan 2020

The Effect Of Ph On Synaptic Transmission At The Neuromuscular Junction In Drosophila Melanogaster, Catherine Elizabeth Stanley

Theses and Dissertations--Biology

Synaptic transmission is the main avenue of neuronal communication and can be affected by a multitude of factors, both intracellularly and extracellularly. The effects of pH changes on synaptic transmission have been studied for many years across many different models. Intracellular acidification at the presynaptic terminal is known to occur with increased neuronal activity and can also occur in pathological conditions. The effects of these pH alterations are therefore an important area of study. Here, intracellular acidification using either propionic acid or the ammonium chloride pre-pulse technique was examined for the effects on both spontaneous and evoked synaptic transmission at …


Actin Regulation And Furrow Dynamics During Early Drosophila Embryogenesis, Yi Xie Jan 2020

Actin Regulation And Furrow Dynamics During Early Drosophila Embryogenesis, Yi Xie

Electronic Theses and Dissertations

Drosophila embryogenesis starts with a single nucleus undergo 13 rounds of nuclear divisions called syncytial cycles. Staring at cycle 10 when nuclei migrate to the surface of the embryo, massive and dynamic cortical actin structures and cleavage furrow formations occur. How actin regulators coordinate into an organized network directing three-dimension actin structures in the developing organisms is an unsolved question. Here, I present an in-depth characterization of actin cap dynamics: the actin caps go through expansion, stabilization, elongation and fragmentation phases in each cycle. Arp2/3 is the major contributor to actin cap formation. The functions of 7 different actin and …


The Roles Of Polar Cell Extensions In Drosophila Micropyle Formation, Bradford Hull Jan 2020

The Roles Of Polar Cell Extensions In Drosophila Micropyle Formation, Bradford Hull

Theses and Dissertations--Biology

The Drosophila micropyle is a conserved formation utilized to allow sperm passage past the robust eggshell structure for fertilization. Micropyle formation follows a unique acellular tubulogenesis method where it is secreted and shaped by specialized follicle cells including the border cells and polar cells. In late oogenesis, the polar cells form extensions that are necessary to create the micropyle pore through which sperm enters. Previous work established that polar cell extension presence is required for micropyle pore formation. We investigated temporal requirements of extensions throughout chorion deposition and found extensions are required during the beginning and middle of choriogenesis, but …


Launching The Next Generation : Transcriptional Regulation During Oogenesis, Alicia K. Mccarthy Jan 2020

Launching The Next Generation : Transcriptional Regulation During Oogenesis, Alicia K. Mccarthy

Legacy Theses & Dissertations (2009 - 2024)

Germ cells give rise to gametes and link generations by passing genetic information from parent to offspring. Gametes arise from, in many sexually reproducing organisms, germline stem cells (GSCs) which are set aside early during development. GSCs have an amazing capacity to undergo self-renewal to give rise to a pool of undifferentiated cells, while also differentiating to generate specialized germ cells such as haploid gametes. Upon female GSC differentiation, mitotically dividing germ cells can initiate meiosis, and mature within a follicle. During maturation, the specified oocyte is provided with a trust fund of RNAs and proteins for the next generation …


Delineation Of Events In Centripetal Migration During Drosophila Oogenesis, Travis Tait Parsons May 2019

Delineation Of Events In Centripetal Migration During Drosophila Oogenesis, Travis Tait Parsons

UNLV Theses, Dissertations, Professional Papers, and Capstones

All multicellular organisms initially start out as a single cell. This cell must use the genetic information encoded in its DNA to multiply in number and build itself into a complex multicellular organism. How this process occurs is the focus of developmental biology, a field that seeks to understand how a combination of genetic information and environmental conditions shape a cell from its beginnings as a zygote all the way to maturity. A fundamental part of this process is the ability of cells to work together in order to build complex tissues and organs. Cells achieve this coordination by using …


Mechanisms Of Oriented Cell Division And Their Roles In Tissue Development, Evan Blake Dewey Apr 2019

Mechanisms Of Oriented Cell Division And Their Roles In Tissue Development, Evan Blake Dewey

Biology ETDs

Properly executed cell division is crucial to development, maintenance, and longevity of multicellular organisms. Defects in both symmetric and asymmetric divisions can lead to improper developmental patterning, as well as genomic instability, disruption of tissue homeostasis, and cancer. Our research focuses on how regulators orchestrate proper cell divisions. Mushroom Body Defect (Mud) is one such regulator, and here we describe how Mud is regulated via the Hippo signaling pathway kinase Warts (Wts), showing Wts phosphorylates Mud to enhance interaction with the polarity protein Partner of Inscuteable, promoting spindle orientation activity. We next focus on another regulator, Shortstop (Shot), describing a …


The Drosophila Neuroblasts: A Model System For Human Ribosomopathies, Sonu Shrestha Baral Mar 2019

The Drosophila Neuroblasts: A Model System For Human Ribosomopathies, Sonu Shrestha Baral

LSU Doctoral Dissertations

This dissertation describes the use of Drosophila neuroblasts (NBs) to model human ribosomopathies; the overall goal is to understand why specific stem cell and progenitor cell populations are the primary targets in nucleolar stress as seen in the ribosomopathies. Chapter 1 provides an overview of relevant literature. Chapter 2 describes nucleolar stress in Drosophila neuroblasts as a model for human ribosomopathies. For this, we induce nucleolar stress by using the UAS-GAL4 system to express RNAi that depletes Nopp140 transcripts, and we also employ homozygous, CRISPR-Cas9-generated Nopp140 gene disruptions with a systemic null phenotype (Nopp140-/-). Embryonic lethality was observed …


The Effects Of A Ketone Body On Synaptic Transmission, Alexandra Elizabeth Stanback Jan 2019

The Effects Of A Ketone Body On Synaptic Transmission, Alexandra Elizabeth Stanback

Theses and Dissertations--Biology

The ketogenic diet is commonly used to control epilepsy, especially in cases when medications cannot. The diet typically consists of high fat, low carb, and adequate protein and produces a metabolite called acetoacetate. Seizure activity is characterized by glutamate excitotoxicity and therefore glutamate regulation is a point of research for control of these disorders. Acetoacetate is heavily implicated as the primary molecule responsible for decreasing glutamate in the synapse; it is believed that acetoacetate interferes with the transport of glutamate into the synaptic vesicles. The effects on synaptic transmission at glutamatergic synapses was studied in relation to the ketogenic diet …


Polyglutamine Repeat Proteins Disrupt Actin Structure In Drosophila Photoreceptors., Annie Vu, Tyler Humphries, Sean Vogel, Adam Haberman Dec 2018

Polyglutamine Repeat Proteins Disrupt Actin Structure In Drosophila Photoreceptors., Annie Vu, Tyler Humphries, Sean Vogel, Adam Haberman

Biology: Faculty Scholarship

Expansions of polygutamine-encoding stretches in several genes cause neurodegenerative disorders including Huntington's Disease and Spinocerebellar Ataxia type 3. Expression of the human disease alleles in Drosophila melanogaster neurons recapitulates cellular features of these disorders, and has therefore been used to model the cell biology of these diseases. Here, we show that polyglutamine disease alleles expressed in Drosophila photoreceptors disrupt actin structure at rhabdomeres, as other groups have shown they do in Drosophila and mammalian dendrites. We show this actin regulatory pathway works through the small G protein Rac and the actin nucleating protein Form3. We also find that Form3 has …


Investigating The Role Of The Rough Deal Protein In Spindle Assembly Complex Signaling, Ryan P. Mihealsick Aug 2018

Investigating The Role Of The Rough Deal Protein In Spindle Assembly Complex Signaling, Ryan P. Mihealsick

Chancellor’s Honors Program Projects

No abstract provided.


Regulation Of Epithelial Proliferation And Migration By Apical-Basal Polarity Proteins, Gregory Vincent Schimizzi May 2018

Regulation Of Epithelial Proliferation And Migration By Apical-Basal Polarity Proteins, Gregory Vincent Schimizzi

Arts & Sciences Electronic Theses and Dissertations

Epithelial cells line all the outside surfaces of the body where they perform essential roles in maintaining homeostasis. In addition, epithelial tissues are implicated in many disease processes and are the most common tissue type to give rise to human cancer. Therefore, a thorough understanding of epithelial development and homeostasis has broad implications for understanding human development, health, and disease. The establishment and maintenance of apical-basal polarity is a defining characteristic and essential feature of functioning epithelia. Proper apical-basal polarity (ABP) is required for epithelial tissues to carry out their functions, which include absorption, secretion, barrier formation, and collective migration. …


Evolutionary Conservation Of Midline Repulsion By Robo Family Receptors In Flies And Mice, Allison Loy May 2018

Evolutionary Conservation Of Midline Repulsion By Robo Family Receptors In Flies And Mice, Allison Loy

Biological Sciences Undergraduate Honors Theses

As the nervous system develops in animal embryos, neuronal axons are guided to their synaptic targets by extra cellular cues that signal through axon guidance receptors expressed on the surface of the axon. In animals with bilateral symmetry, one of the important decisions made by nearly every axon in the embryonic nervous system is whether to stay on its own side of the body, or to cross the midline and connect to cells on the opposite side. The Roundabout (Robo) family is an evolutionarily conserved group of axon guidance receptors that regulate midline crossing in a wide range of animal …


Impact Of Ros Presence On Oncogenic Ras Activity, Chris Andersen Jan 2018

Impact Of Ros Presence On Oncogenic Ras Activity, Chris Andersen

Summer Research

Previous research has suggested a connection between oncogenic Ras and the cell’s levels of Reactive Oxygen Species (ROS). The underlying cellular mechanism is not well understood. To investigate this connection, we applied the UAS-GAL4 system in Drosophila melanogaster flies to control the expression of Ras and Keap1, a key redox regulator.2 We expected the activity of Ras to vary with its redox environment and thus impact protein activity downstream of Ras signaling cascades. In monitoring three proteins downstream of Ras—Dcp-1, Akt, and MAPK—we aimed to determine which pathways were impacted by ROS modulation.


Jak/Stat Signaling Regulates Gametogenesis And Age-Related Reproductive Maintenance, Michelle Suzanne Giedt Jan 2018

Jak/Stat Signaling Regulates Gametogenesis And Age-Related Reproductive Maintenance, Michelle Suzanne Giedt

Theses and Dissertations--Biology

Cell signaling is central to integration of internal and external cues that regulate development and homeostasis. Most development is thought of as pre-adult, but limited developmental processes occur in adults. Gametogenesis incorporates elements of both these facets, with a distinct developmental plan for gamete synthesis which is regulated by integration of homeostatic inputs such as nutrient status, and environmental cues. Signaling pathways integrate and transduce information from these cues to evoke a response. A decline in homeostasis and subsequent cues occurs over time, in the case of reproductive tissues leading to a progressive loss of fertility. The Janus Kinase and …


Regulated Transcriptional Silencing Promotes Germline Stem Cell Differentiation In Drosophila Melanogaster, Pooja Flora Jan 2018

Regulated Transcriptional Silencing Promotes Germline Stem Cell Differentiation In Drosophila Melanogaster, Pooja Flora

Legacy Theses & Dissertations (2009 - 2024)

Germ cells are the only cell in an organism that have the capacity to give rise to a new organism and are passed from one generation to the next. Therefore, to maintain this unique ability of totipotency and immortality, germ cells execute specific functions, such as, repression of a somatic program and contour a germ line-specific pre- and post-transcriptional gene regulatory landscape. In many sexually reproducing organisms, germ cells are formed during the earliest stages of embryogenesis and undergoes several stages of development to eventually get encapsulated by the somatic cells of the gonad. Once, in the gonad, the germ …


Chromatin-Signaling Axis Orchestrates The Formation Of Germline Stem Cell Differentiation Niche In Drosophila, Maitreyi Upadhyay Jan 2018

Chromatin-Signaling Axis Orchestrates The Formation Of Germline Stem Cell Differentiation Niche In Drosophila, Maitreyi Upadhyay

Legacy Theses & Dissertations (2009 - 2024)

Stem cells have the unique capability of self-renewing into stem cells and differentiating into several terminal cell types. Loss of either of these processes can lead to aging, progression towards degenerative diseases and cancers. Insight into how self-renewal and differentiation are regulated will have tremendous therapeutic impact. Drosophila is an excellent model system for stem cell study due to the availability of various mutants, markers and RNAi technology. In order to study stem cell biology, we use female Drosophila gonads, whose stem cell population – the germline stem cells (GSCs) gives rise to gametes.


Studies Of Norspermidine Uptake In Drosophila Suggest The Existence Of Multiple Polyamine Transport Pathways, Michael Dieffenbach Jan 2018

Studies Of Norspermidine Uptake In Drosophila Suggest The Existence Of Multiple Polyamine Transport Pathways, Michael Dieffenbach

Honors Undergraduate Theses

Polyamines are a class of essential nutrients involved in many basic cellular processes such as gene expression, cell proliferation, and apoptosis. Without polyamines, cell growth is delayed or halted. Cancerous cells require an abundance of polyamines through a combination of synthesis and transport from the extracellular environment. An FDA-approved drug, D,L-α-difluoromethylornithine (DFMO), blocks polyamine synthesis but is ineffective at inhibiting cell growth due to polyamine transport. Thus, there is a need to develop drugs that inhibit polyamine transport to use in combination with DFMO. Surprisingly, little is known about the polyamine transport system in humans and other eukaryotes. Understanding the …


Cellular/Molecular Analysis Of Interspecies Sterile Male Hybrids In Drosophila, Rachelle L. Kanippayoor Jun 2017

Cellular/Molecular Analysis Of Interspecies Sterile Male Hybrids In Drosophila, Rachelle L. Kanippayoor

Electronic Thesis and Dissertation Repository

Over time, genetic differences can accumulate between populations that are geographically separated. This genetic divergence can lead to the evolution of reproductive isolating mechanisms that reduce gene flow between the populations and, upon secondary contact, result in distinct species. The process of speciation is, thus, what accounts for the multitude of species that contribute to the rich biodiversity on Earth. Interspecies hybrid sterility is a postzygotic isolating mechanism that affects the development of hybrids, rendering them sterile. A notable trend, known as Haldane's Rule, describes that heterogametic individual (e.g. males in Drosophila) are more susceptible to sterility than homogametic …


Sumo Regulates The Activity Of Smoothened And Costal-2 In Drosophila Hedgehog Signaling, Jie Zhang, Yajuan Liu, Kai Jiang, Jianhang Jia Feb 2017

Sumo Regulates The Activity Of Smoothened And Costal-2 In Drosophila Hedgehog Signaling, Jie Zhang, Yajuan Liu, Kai Jiang, Jianhang Jia

Markey Cancer Center Faculty Publications

In Hedgehog (Hh) signaling, the GPCR-family protein Smoothened (Smo) acts as a signal transducer that is regulated by phosphorylation and ubiquitination, which ultimately change the cell surface accumulation of Smo. However, it is not clear whether Smo is regulated by other post-translational modifications, such as sumoylation. Here, we demonstrate that knockdown of the small ubiquitin-related modifier (SUMO) pathway components Ubc9 (a SUMO-conjugating enzyme E2), PIAS (a SUMO-protein ligase E3), and Smt3 (the SUMO isoform in Drosophila) by RNAi prevents Smo accumulation and alters Smo activity in the wing. We further show that Hh-induced-sumoylation stabilizes Smo, whereas desumoylation by Ulp1 …


Characterization Of Vesicular Monoamine Transporter 2 And Its Role In Parkinson's Disease Pathogenesis Using Drosophila, Antonio Joel Tito Jr., Sheng Zhang Dec 2016

Characterization Of Vesicular Monoamine Transporter 2 And Its Role In Parkinson's Disease Pathogenesis Using Drosophila, Antonio Joel Tito Jr., Sheng Zhang

Dissertations & Theses (Open Access)

Parkinson’s disease (PD) is a progressive neurodegenerative disorder caused by the selective loss of the dopaminergic neurons in the Substantia nigra pars compacta region of the brain. PD is also the most common neurodegenerative disorder and the second most common movement disorder. PD patients exhibit the cardinal symptoms, including tremor of the extremities, rigidity, slowness of movement, and postural instability, after 70-80% of DA neurons degenerate. It is, therefore, imperative to elucidate the underlying mechanisms involved in the selective degeneration of DA neurons. Although increasing numbers of PD genes have been identified, why these largely widely expressed genes induce …


Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung Apr 2016

Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung

Open Access Dissertations

In neurons, normal distribution and selective removal of mitochondria are essential for preserving compartmentalized cellular function. Parkin, an E3 ubiquitin ligase associated with familial Parkinson’s disease, has been implicated in mitochondrial dynamics and removal. However, it is not clear how Parkin plays a role in mitochondrial turnover in vivo, and whether the mature neurons possess a compartmentalized Parkin-dependent mitochondrial life cycle. Using the live Drosophila nervous system, here, I investigate the involvement of Parkin in mitochondrial dynamics; organelle distribution, morphology and removal. Parkin deficient animals displayed less number of axonal mitochondria without disturbing organelle motility behaviors, morphology and metabolic state. …