Open Access. Powered by Scholars. Published by Universities.®

Biotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Dartmouth College

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 23 of 23

Full-Text Articles in Biotechnology

Encoding Permanent Records Of Transcription In The Genome, Francesco Ettore Emiliani Mar 2023

Encoding Permanent Records Of Transcription In The Genome, Francesco Ettore Emiliani

Dartmouth College Ph.D Dissertations

Current approaches to study cellular transcriptional states offer only a single frame in the life of a cell, often in a destructive fashion. This means that our state snapshot neither has the context of the past, nor the ability to be traced into the future. To overcome this, we present a technology that can permanently encode gene expression for later recovery. Our technology uses transcriptional responses to guide CRISPR/AsCas12a to ‘write’ information into the cell’s own genome, creating a permanent and heritable record of this response. By placing a set of AsCas12a guides under the control of a Wnt-responsive TCF/LEF …


Modeling The Effect Of Igg Subclasses And Specificity In The Translocation Of Monoclonal Antibodies Across The Placental Barrier, Sayuri Tais Miyamoto Magnabosco Jun 2021

Modeling The Effect Of Igg Subclasses And Specificity In The Translocation Of Monoclonal Antibodies Across The Placental Barrier, Sayuri Tais Miyamoto Magnabosco

ENGS 88 Honors Thesis (AB Students)

Infections are responsible for over half a million neonatal deaths every year (Lawn et al., 2014). Thus, there is huge interest in leveraging maternal immunization against infectious diseases to grant fetal protection during its development through the vertical transferring of IgG antibodies, the only Ig subclass that can significantly cross the placental barrier. Studies about vertical immunization rely on in-vitro models to extrapolate physiological conditions of the human placenta. The BeWo Transwell model (Bode et al., 2006) presents itself as a reliable model to mimic the transplacental transport mechanism of antibodies (Ellinger et al., 1999; Poulsen et al., 2009) …


Development Of A Core Clostridium Thermocellum Kinetic Metabolic Model Consistent With Multiple Genetic Perturbations, Satyakam Dash, Ali Khodayari, Jilai Zhou, Evert K. Holwerda, Daniel Olson, Lee Lynd, Costas Maranas May 2017

Development Of A Core Clostridium Thermocellum Kinetic Metabolic Model Consistent With Multiple Genetic Perturbations, Satyakam Dash, Ali Khodayari, Jilai Zhou, Evert K. Holwerda, Daniel Olson, Lee Lynd, Costas Maranas

Dartmouth Scholarship

Clostridium thermocellum is a Gram-positive anaerobe with the ability to hydrolyze and metabolize cellulose into biofuels such as ethanol, making it an attractive candidate for consolidated bioprocessing (CBP). At present, metabolic engineering in C. thermocellum is hindered due to the incomplete description of its metabolic repertoire and regulation within a predictive metabolic model. Genome-scale metabolic (GSM) models augmented with kinetic models of metabolism have been shown to be effective at recapitulating perturbed metabolic phenotypes.

In this effort, we first update a second-generation genome-scale metabolic model (iCth446) for C. thermocellum by correcting cofactor dependencies, restoring elemental and charge balances, …


Biological Lignocellulose Solubilization: Comparative Evaluation Of Biocatalysts And Enhancement Via Cotreatment, Julie M. D. Paye, Anna Guseva, Sarah K. Hammer, Erica Gjersing Jan 2016

Biological Lignocellulose Solubilization: Comparative Evaluation Of Biocatalysts And Enhancement Via Cotreatment, Julie M. D. Paye, Anna Guseva, Sarah K. Hammer, Erica Gjersing

Dartmouth Scholarship

Feedstock recalcitrance is the most important barrier impeding cost-effective production of cellulosic biofuels. Pioneer commercial cellulosic ethanol facilities employ thermochemical pretreatment and addition of fungal cellulase, reflecting the main research emphasis in the field. However, it has been suggested that it may be possible to process cellulosic biomass without thermochemical pretreatment using thermophilic, cellulolytic bacteria. To further explore this idea, we examine the ability of various biocatalysts to solubilize autoclaved but otherwise unpretreated cellulosic biomass under controlled but not industrial conditions.


Anaerobic Detoxification Of Acetic Acid In A Thermophilic Ethanologen, A Joe Shaw, Bethany B. Miller, Stephen R. Rogers, William Robert Kenealy, Alex Meola, Ashwini Bhandiwad, W Ryan Sillers, Indraneel Shikhare, David Hogsett, Christopher Herring May 2015

Anaerobic Detoxification Of Acetic Acid In A Thermophilic Ethanologen, A Joe Shaw, Bethany B. Miller, Stephen R. Rogers, William Robert Kenealy, Alex Meola, Ashwini Bhandiwad, W Ryan Sillers, Indraneel Shikhare, David Hogsett, Christopher Herring

Dartmouth Scholarship

The liberation of acetate from hemicellulose negatively impacts fermentations of cellulosic biomass, limiting the concentrations of substrate that can be effectively processed. Solvent-producing bacteria have the capacity to convert acetate to the less toxic product acetone, but to the best of our knowledge, this trait has not been transferred to an organism that produces ethanol at high yield. We have engineered a five-step metabolic pathway to convert acetic acid to acetone in the thermophilic anaerobe Thermoanaerobacterium saccharolyticum.

.


Elimination Of Hydrogenase Active Site Assembly Blocks H2 Production And Increases Ethanol Yield In Clostridium Thermocellum, Ranjita Biswas, Tianyong Zheng, Daniel G. Olson, Lee R. Lynd, Adam M. Guss Feb 2015

Elimination Of Hydrogenase Active Site Assembly Blocks H2 Production And Increases Ethanol Yield In Clostridium Thermocellum, Ranjita Biswas, Tianyong Zheng, Daniel G. Olson, Lee R. Lynd, Adam M. Guss

Dartmouth Scholarship

Background: The native ability of Clostridium thermocellum to rapidly consume cellulose and produce ethanol makes it a leading candidate for a consolidated bioprocessing (CBP) biofuel production strategy. C. thermocellum also synthesizes lactate, formate, acetate, H2 , and amino acids that compete with ethanol production for carbon and electrons. Elimination of H2 production could redirect carbon flux towards ethanol production by making more electrons available for acetyl coenzyme A reduction to ethanol. Results: H2 production in C. thermocellum is encoded by four hydrogenases. Rather than delete each individually, we targeted hydrogenase maturase gene hydG, involved in converting the …


The Exometabolome Of Clostridium Thermocellum Reveals Overflow Metabolism At High Cellulose Loading, Evert K. Holwerda, Philip G. Thorne, Daniel G. Olson, Daniel Amador-Noguez, Nancy L. Engle, Timothy J. Tschaplinski, Johannes P. Van Dijken, Lee R. Lynd Oct 2014

The Exometabolome Of Clostridium Thermocellum Reveals Overflow Metabolism At High Cellulose Loading, Evert K. Holwerda, Philip G. Thorne, Daniel G. Olson, Daniel Amador-Noguez, Nancy L. Engle, Timothy J. Tschaplinski, Johannes P. Van Dijken, Lee R. Lynd

Dartmouth Scholarship

BackgroundClostridium thermocellum is a model thermophilic organism for the production of biofuels from lignocellulosic substrates. The majority of publications studying the physiology of this organism use substrate concentrations of ≤10 g/L. However, industrially relevant concentrations of substrate start at 100 g/L carbohydrate, which corresponds to approximately 150 g/L solids. To gain insight into the physiology of fermentation of high substrate concentrations, we studied the growth on, and utilization of high concentrations of crystalline cellulose varying from 50 to 100 g/L by C. thermocellum. .


Comparative Efficiency And Driving Range Of Light- And Heavy-Duty Vehicles Powered With Biomass Energy Stored In Liquid Fuels Or Batteries, Mark Laser, Lee R. R. Lynd Mar 2014

Comparative Efficiency And Driving Range Of Light- And Heavy-Duty Vehicles Powered With Biomass Energy Stored In Liquid Fuels Or Batteries, Mark Laser, Lee R. R. Lynd

Dartmouth Scholarship

This study addresses the question, "When using cellulosic biomass for vehicular transportation, which field-to-wheels pathway is more efficient: that using biofuels or that using bioelectricity?" In considering the question, the level of assumed technological maturity significantly affects the comparison, as does the intended transportation application. Results from the analysis indicate that for light-duty vehicles, over ranges typical in the United States today (e.g., 560-820 miles), field-to-wheels performance is similar, with some scenarios showing biofuel to be more efficient, and others indicating the two pathways to be essentially the same. Over the current range of heavy-duty vehicles, the field-to-wheels efficiency is …


Genome Wide Association Mapping Of Grain Arsenic, Copper, Molybdenum And Zinc In Rice (Oryza Sativa L.) Grown At Four International Field Sites, Gareth J. Norton, Alex Douglas, Brett Lahner, Elena Yakubova, Mary Lou Guerinot, Shannon R.M Pinson, Lee Tarpley, George C. Eizenga, Steve P. Mcgrath, Fang-Jie Zhao Feb 2014

Genome Wide Association Mapping Of Grain Arsenic, Copper, Molybdenum And Zinc In Rice (Oryza Sativa L.) Grown At Four International Field Sites, Gareth J. Norton, Alex Douglas, Brett Lahner, Elena Yakubova, Mary Lou Guerinot, Shannon R.M Pinson, Lee Tarpley, George C. Eizenga, Steve P. Mcgrath, Fang-Jie Zhao

Dartmouth Scholarship

The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA) mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of ~300 accessions and 36.9 k single nucleotide polymorphisms (SNPs). The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with …


Gene And Protein Sequence Optimization For High-Level Production Of Fully Active And Aglycosylated Lysostaphin In Pichia Pastoris, Hongliang Zhao, Kristina Blazanovic, Yoonjoo Choi, Chris Bailey-Kellogg, Karl E. Griswold Feb 2014

Gene And Protein Sequence Optimization For High-Level Production Of Fully Active And Aglycosylated Lysostaphin In Pichia Pastoris, Hongliang Zhao, Kristina Blazanovic, Yoonjoo Choi, Chris Bailey-Kellogg, Karl E. Griswold

Dartmouth Scholarship

Lysostaphin represents a promising therapeutic agent for the treatment of staphylococcal infections, in particular those of methicillin-resistant Staphylococcus aureus (MRSA). However, conventional expression systems for the enzyme suffer from various limitations, and there remains a need for an efficient and cost-effective production process to facilitate clinical translation and the development of nonmedical applications. While Pichia pastoris is widely used for high-level production of recombinant proteins, there are two major barriers to the production of lysostaphin in this industrially relevant host: lack of expression from the wild-type lysostaphin gene and aberrant glycosylation of the wild-type protein sequence. The first barrier can …


Tracking The Cellulolytic Activity Of Clostridium Thermocellum Biofilms, Alexandru Dumitrache, Gideon M. Wolfaardt, David Allen, Steven N. Liss, Lee R. Lynd Nov 2013

Tracking The Cellulolytic Activity Of Clostridium Thermocellum Biofilms, Alexandru Dumitrache, Gideon M. Wolfaardt, David Allen, Steven N. Liss, Lee R. Lynd

Dartmouth Scholarship

Microbial cellulose conversion by Clostridium thermocellum 27405 occurs predominantly through the activity of substrate-adherent bacteria organized in thin, primarily single cell-layered biofilms. The importance of cellulosic surface exposure to microbial hydrolysis has received little attention despite its implied impact on conversion kinetics.


Functional Heterologous Expression Of An Engineered Full Length Cipa From Clostridium Thermocellum In Thermoanaerobacterium Saccharolyticum, Devin H. Currie, Christopher D. Herring, Adam M. Guss, Daniel G. Olson, David A. Hogsett, Lee R. Rynd Mar 2013

Functional Heterologous Expression Of An Engineered Full Length Cipa From Clostridium Thermocellum In Thermoanaerobacterium Saccharolyticum, Devin H. Currie, Christopher D. Herring, Adam M. Guss, Daniel G. Olson, David A. Hogsett, Lee R. Rynd

Dartmouth Scholarship

Background: Cellulose is highly recalcitrant and thus requires a specialized suite of enzymes to solubilize it into fermentable sugars. In C. thermocellum, these extracellular enzymes are present as a highly active multi-component system known as the cellulosome. This study explores the expression of a critical C. thermocellum cellulosomal component in T. saccharolyticum as a step toward creating a thermophilic bacterium capable of consolidated bioprocessing by employing heterologously expressed cellulosomes. Results:We developed an inducible promoter system based on the native T. saccharolyticum xynA promoter, which was shown to be induced by xylan and xylose. The promoter was used to …


Form And Function Of Clostridium Thermocellum Biofilms, Alexandru Dumitrache, Gideon Wolfaardt, Grant Allen, Steven N. Liss, Lee R. Lynd Oct 2012

Form And Function Of Clostridium Thermocellum Biofilms, Alexandru Dumitrache, Gideon Wolfaardt, Grant Allen, Steven N. Liss, Lee R. Lynd

Dartmouth Scholarship

The importance of bacterial adherence has been acknowledged in microbial lignocellulose conversion studies; however, few reports have described the function and structure of biofilms supported by cellulosic substrates. We investigated the organization, dynamic formation, and carbon flow associated with biofilms of the obligately anaerobic cellulolytic bacterium Clostridium thermocellum 27405. Using noninvasive, in situ fluorescence imaging, we showed biofilms capable of near complete substrate conversion with a characteristic monolayered cell structure without an extracellular polymeric matrix typically seen in biofilms. Cell division at the interface and terminal endospores appeared throughout all stages of biofilm growth. Using continuous-flow reactors with a rate …


Ethanol And Anaerobic Conditions Reversibly Inhibit Commercial Cellulase Activity In Thermophilic Simultaneous Saccharification And Fermentation (Tssf), Kara K. Podkaminer, William R. Kenealy, Christopher D. Herring, David A. Hogsett, Lee R. Lynd Jun 2012

Ethanol And Anaerobic Conditions Reversibly Inhibit Commercial Cellulase Activity In Thermophilic Simultaneous Saccharification And Fermentation (Tssf), Kara K. Podkaminer, William R. Kenealy, Christopher D. Herring, David A. Hogsett, Lee R. Lynd

Dartmouth Scholarship

A previously developed mathematical model of low solids thermophilic simultaneous saccharification and fermentation (tSSF) with Avicel was unable to predict performance at high solids using a commercial cellulase preparation (Spezyme CP) and the high ethanol yield Thermoanaerobacterium saccharolyticum strain ALK2. The observed hydrolysis proceeded more slowly than predicted at solids concentrations greater than 50 g/L Avicel. Factors responsible for this inaccuracy were investigated in this study.


Dcm Methylation Is Detrimental To Plasmid Transformation In Clostridium Thermocellum, Adam M. Guss, Daniel G. Olson, Nicky C. Caiazza, Lee R. Lynd May 2012

Dcm Methylation Is Detrimental To Plasmid Transformation In Clostridium Thermocellum, Adam M. Guss, Daniel G. Olson, Nicky C. Caiazza, Lee R. Lynd

Dartmouth Scholarship

Background: Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency and similar plasmids can transform C. thermocellum at dramatically different efficiencies. Results: We report an increase in transformation efficiency of C. thermocellum for a variety of plasmids by using DNA that has been methylated by Escherichia coli Dam but not Dcm methylases. When isolated from a dam + dcm + E. coli strain, pAMG206 transforms C. thermocellum 100-fold better …


Complete Genome Sequence Of Clostridium Clariflavum Dsm 19732, Javier A. Izquierdo, Lynne Goodwin, Karen W. Davenport, Hazuki Teshima Jan 2012

Complete Genome Sequence Of Clostridium Clariflavum Dsm 19732, Javier A. Izquierdo, Lynne Goodwin, Karen W. Davenport, Hazuki Teshima

Dartmouth Scholarship

Clostridium clariflavum is a Cluster III Clostridium within the family Clostridiaceae isolated from thermophilic anaerobic sludge (Shiratori et al, 2009). This species is of interest because of its similarity to the model cellulolytic organism Clostridium thermocellum and for the ability of environmental isolates to break down cellulose and hemicellulose. Here we describe features of the 4,897,678 bp long genome and its annotation, consisting of 4,131 protein-coding and 98 RNA genes, for the type strain DSM 19732.


Deletion Of The Cel48s Cellulase From Clostridium Thermocellum, Daniel G. Olson, Shital A. Tripathi, Richard J. Giannone, Jonathan Lo, Nicky C. Caiazza, David A. Hogsett, Robert L. Hettich, Adam M. Guss, Genia Dubrovsky, Lee R. Lynd Oct 2010

Deletion Of The Cel48s Cellulase From Clostridium Thermocellum, Daniel G. Olson, Shital A. Tripathi, Richard J. Giannone, Jonathan Lo, Nicky C. Caiazza, David A. Hogsett, Robert L. Hettich, Adam M. Guss, Genia Dubrovsky, Lee R. Lynd

Dartmouth Scholarship

Clostridium thermocellum is a thermophilic anaerobic bacterium that rapidly solubilizes cellulose with the aid of a multienzyme cellulosome complex. Creation of knockout mutants for Cel48S (also known as CelS, S(S), and S8), the most abundant cellulosome subunit, was undertaken to gain insight into its role in enzymatic and microbial cellulose solubilization. Cultures of the Cel48S deletion mutant (S mutant) were able to completely solubilize 10 g/L crystalline cellulose. The cellulose hydrolysis rate of the S mutant strain was 60% lower than the parent strain, with the S mutant strain also exhibiting a 40% reduction in cell yield. The cellulosome produced …


Development Of Pyrf-Based Genetic System For Targeted Gene Deletion In Clostridium Thermocellum And Creation Of A Pta Mutant, Shital A. Tripathi, Daniel G. Olson, D. Aaron Argyros, Bethany B. Miller, Trisha F. Barrett, Daniel M. Murphy, Jesse D. Mccool, Anne K. Warner, Vineet B. Rajgarhia, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza Aug 2010

Development Of Pyrf-Based Genetic System For Targeted Gene Deletion In Clostridium Thermocellum And Creation Of A Pta Mutant, Shital A. Tripathi, Daniel G. Olson, D. Aaron Argyros, Bethany B. Miller, Trisha F. Barrett, Daniel M. Murphy, Jesse D. Mccool, Anne K. Warner, Vineet B. Rajgarhia, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza

Dartmouth Scholarship

We report development of a genetic system for making targeted gene knockouts in Clostridium thermocellum, a thermophilic anaerobic bacterium that rapidly solubilizes cellulose. A toxic uracil analog, 5-fluoroorotic acid (5-FOA), was used to select for deletion of the pyrF gene. The ΔpyrF strain is a uracil auxotroph that could be restored to a prototroph via ectopic expression of pyrF from a plasmid, providing a positive genetic selection. Furthermore, 5-FOA was used to select against plasmid-expressed pyrF, creating a negative selection for plasmid loss. This technology was used to delete a gene involved in organic acid production, namely pta, which encodes …


Quantifying And Resolving Multiple Vector Transformants In S. Cerevisiae Plasmid Libraries, Thomas C. Scanlon, Elizabeth C. Gray, Karl E. Griswold Nov 2009

Quantifying And Resolving Multiple Vector Transformants In S. Cerevisiae Plasmid Libraries, Thomas C. Scanlon, Elizabeth C. Gray, Karl E. Griswold

Dartmouth Scholarship

In addition to providing the molecular machinery for transcription and translation, recombinant microbial expression hosts maintain the critical genotype-phenotype link that is essential for high throughput screening and recovery of proteins encoded by plasmid libraries. It is known that Escherichia coli cells can be simultaneously transformed with multiple unique plasmids and thusly complicate recombinant library screening experiments. As a result of their potential to yield misleading results, bacterial multiple vector transformants have been thoroughly characterized in previous model studies. In contrast to bacterial systems, there is little quantitative information available regarding multiple vector transformants in yeast. Saccharomyces cerevisiae is the …


Metabolic Engineering Of A Thermophilic Bacterium To Produce Ethanol At High Yield, A. Joe Shaw, Kara K. Podkaminer, Sunil G. Desai, John S. Bardsley, Stephen R. Rogers, Philip G. Thorne, David A. Hogsett, Lee R. Lynd Sep 2008

Metabolic Engineering Of A Thermophilic Bacterium To Produce Ethanol At High Yield, A. Joe Shaw, Kara K. Podkaminer, Sunil G. Desai, John S. Bardsley, Stephen R. Rogers, Philip G. Thorne, David A. Hogsett, Lee R. Lynd

Dartmouth Scholarship

We report engineering Thermoanaerobacterium saccharolyticum, a thermophilic anaerobic bacterium that ferments xylan and biomass-derived sugars, to produce ethanol at high yield. Knockout of genes involved in organic acid formation (acetate kinase, phosphate acetyltransferase, and L-lactate dehydrogenase) resulted in a strain able to produce ethanol as the only detectable organic product and substantial changes in electron flow relative to the wild type. Ethanol formation in the engineered strain (ALK2) utilizes pyruvate:ferredoxin oxidoreductase with electrons transferred from ferredoxin to NAD(P), a pathway different from that in previously described microbes with a homoethanol fermentation. The homoethanologenic phenotype was stable for >150 generations …


N-Glycan Modification In Aspergillus Species, Elke Kainz, Andreas Gallmetzer, Christian Hatzl, Juergen H. Nett, Huijuan Li, Thorsten Schinko, Robert Pachlinger, Harald Berger, Yazmid Reyes-Dominguez, Andreas Bernreiter, Tillmann Gerngross, Stefan Wildt, Joseph Strauss Dec 2007

N-Glycan Modification In Aspergillus Species, Elke Kainz, Andreas Gallmetzer, Christian Hatzl, Juergen H. Nett, Huijuan Li, Thorsten Schinko, Robert Pachlinger, Harald Berger, Yazmid Reyes-Dominguez, Andreas Bernreiter, Tillmann Gerngross, Stefan Wildt, Joseph Strauss

Dartmouth Scholarship

The production by filamentous fungi of therapeutic glycoproteins intended for use in mammals is held back by the inherent difference in protein N-glycosylation and by the inability of the fungal cell to modify proteins with mammalian glycosylation structures. Here, we report protein N-glycan engineering in two Aspergillus species. We functionally expressed in the fungal hosts heterologous chimeric fusion proteins containing different localization peptides and catalytic domains. . This strategy allowed the isolation of a strain with a functional -1,2-mannosidase producing increased amounts of N-glycans of the Man 5 GlcNAc 2 type. This strain was further engineered by the introduction of …


Saccharomyces Cerevisiae-Based Molecular Tool Kit For Manipulation Of Genes From Gram-Negative Bacteria, Robert M. Q. Shanks, Nicky C. Caiazza, Shannon M. Hinsa, Christine M. Toutain, George A. O'Toole Jul 2006

Saccharomyces Cerevisiae-Based Molecular Tool Kit For Manipulation Of Genes From Gram-Negative Bacteria, Robert M. Q. Shanks, Nicky C. Caiazza, Shannon M. Hinsa, Christine M. Toutain, George A. O'Toole

Dartmouth Scholarship

A tool kit of vectors was designed to manipulate and express genes from a wide range of gram-negative species by using in vivo recombination. Saccharomyces cerevisiae can use its native recombination proteins to combine several amplicons in a single transformation step with high efficiency. We show that this technology is particularly useful for vector design. Shuttle, suicide, and expression vectors useful in a diverse group of bacteria are described and utilized. This report describes the use of these vectors to mutate clpX and clpP of the opportunistic pathogen Pseudomonas aeruginosa and to explore their roles in biofilm formation and surface …


The Risks And Benefits Of Genetically Modified Crops: A Multidisciplinary Perspective, Garry D. Peterson, Saul Cunningham, Lisa Deutsch, Jon Erickson, Allyson Quinlan, Ernesto Ráez-Luna, Robert Tinch, Max Troell, Peter Woodbury, Scot Zens Mar 2000

The Risks And Benefits Of Genetically Modified Crops: A Multidisciplinary Perspective, Garry D. Peterson, Saul Cunningham, Lisa Deutsch, Jon Erickson, Allyson Quinlan, Ernesto Ráez-Luna, Robert Tinch, Max Troell, Peter Woodbury, Scot Zens

Dartmouth Scholarship

Worldwide, the area planted in genetically modified (GM) crops has increased dramatically in recent years. Between 1996 and 1999, it rose from 1.6 X 106 ha to more than 35 X 106 ha (James 1998, May 1999). This rapid increase has provoked an explosion of concern, particularly in Europe, over the health and environmental impacts of these crops. Despite claims of safety and warnings against popular panic, public concern over GM crops has resulted in changes in their marketing, labeling, planting, and trade. These changes have fueled an increasingly heated debate among environmental advocates, critics of industrial agriculture, …