Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Molecular Biology

Role Of Bmi1 In Acute Lung Injury, María Helena Hernández-Cuervo Mar 2022

Role Of Bmi1 In Acute Lung Injury, María Helena Hernández-Cuervo

USF Tampa Graduate Theses and Dissertations

Acute Lung Injury (ALI) is a set of signs and symptoms that lead to acute hypoxemic respiratory failure characterized by bilateral pulmonary infiltrates not attributed to cardiogenic origin. It is caused by a massive innate immune response, with the migration of white blood cells (neutrophils and macrophages principally) and a cytokine storm, followed by alterations in mitochondrial function, increase in reactive oxygen species production, and oxidative stress that in turn induces more mitochondrial damage. Several studies have shown that mitochondrial alterations are key events in the mechanism of ALI and reducing mitochondrial dysfunction could be a possible target in the …


Snfing Glucose To Pass Mitochondrial Dysfunction: The Role Of Two Sensory Protein Kinases In Metabolic Diseases, Kai Li Ong Jul 2019

Snfing Glucose To Pass Mitochondrial Dysfunction: The Role Of Two Sensory Protein Kinases In Metabolic Diseases, Kai Li Ong

Theses and Dissertations

Mitochondria is no longer viewed as merely a powerhouse of the cell. It is now apparentthat mitochondria play a central role in signaling, maintaining cellular homeostasis and cell fate.Mitochondrial dysfunction has been linked to many human diseases caused by cellular metabolicderegulation, such as obesity, diabetes, neurodegenerative disease, cardiovascular disease andcancer. Eukaryotic organisms have evolved an efficient way in sensing, communicating andresponding to cellular stress and regulating mitochondrial activity correspondingly through acomplex network of intercommunicating protein kinases and their downstream effectors. Thisdissertation focuses on the interplay of two of the master metabolic regulators in the cell: AMPKand PASK, and characterization of …


Characterizing The Function Of Pas Kinase In Cellular Metabolism And Neurodegenerative Disease, Jenny Adele Pape Jun 2019

Characterizing The Function Of Pas Kinase In Cellular Metabolism And Neurodegenerative Disease, Jenny Adele Pape

Theses and Dissertations

The second identified substrate of PAS kinase discussed is Pbp1. The human homolog of Pbp1 is ataxin-2, mutations in which are a known risk factor for amyotrophic lateral sclerosis (ALS). As diet and sex have been shown to be important factors regarding PAS kinase function, they also are strong contributing factors to ALS and are extensively reviewed herein. Pbp1 is known to be sequestered by PAS kinase under glucose depravation, and it can sequester additional proteins along with it to regulate different cellular pathways. To shed light on the pathways affected by Pbp1, we performed a yeast two-hybrid assay and …


Studies On E2 Conjugation Enzyme Partners Of Mulan E3 Ubiquitin Ligase, Rebekah J. Fitzpatrick Jan 2018

Studies On E2 Conjugation Enzyme Partners Of Mulan E3 Ubiquitin Ligase, Rebekah J. Fitzpatrick

Honors Undergraduate Theses

Mulan is an E3 ubiquitin ligase embedded in the outer mitochondria membrane. Mulan’s participation in the ubiquitination process is conducted through its cytosol exposed RING finger domain, and its ability to modulate protein ubiquitination makes it a key player in mitochondrial and cellular homeostasis. Mulan is known to be involved in mitochondrial fission, fusion, mitochondrial stress, apoptosis, and Parkin-independent mitophagy. Dysregulation of Mulan in mice has been shown to correlate with human neurodegenerative disorders and heart disease. Accumulation of Mulan is predicted to be responsible for the motor neuron degeneration 2 (mnd2) phenotype in mutant mice through the deregulation of …


Exploring The Role Of Lipin1 In Mitophagy Process Using Lipin1 Deficient-Egfp Tagged Lc3 Transgenic Mice, Abdullah Ali Alshudukhi Jan 2017

Exploring The Role Of Lipin1 In Mitophagy Process Using Lipin1 Deficient-Egfp Tagged Lc3 Transgenic Mice, Abdullah Ali Alshudukhi

Browse all Theses and Dissertations

Lipin1 (phosphatidic acid phosphatase) is a key molecule in the cells with two functions: first, it converts phosphatidic acid into diacylglycerol in the cytosol which in turn makes triglycerides. Second, in nucleus lipin1 acts as a transcriptional factor which regulates the expression of genes involved in the fatty acid oxidation and lipid metabolism. Clinically, Lpin1 gene mutations have been detected in patients with severe rhabdomyolysis accompanied with aggregated and dysfunctional mitochondria in their type II muscle fiber. Previously, we have observed that mice with lipin1 deficiency had aggregated mitochondria and abnormal autophagosomes formations by electron microscopy. The mechanism underlying the …


Decorin As A Multivalent Therapeutic Agent Against Cancer., Thomas Neill, Liliana Schaefer, Renato V. Iozzo Feb 2016

Decorin As A Multivalent Therapeutic Agent Against Cancer., Thomas Neill, Liliana Schaefer, Renato V. Iozzo

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Decorin is a prototypical small leucine-rich proteoglycan that epitomizes the multifunctional nature of this critical gene family. Soluble decorin engages multiple receptor tyrosine kinases within the target-rich environment of the tumor stroma and tumor parenchyma. Upon receptor binding, decorin initiates signaling pathways within endothelial cells downstream of VEGFR2 that ultimately culminate in a Peg3/Beclin 1/LC3-dependent autophagic program. Concomitant with autophagic induction, decorin blunts capillary morphogenesis and endothelial cell migration, thereby significantly compromising tumor angiogenesis. In parallel within the tumor proper, decorin binds multiple RTKs with high affinity, including Met, for a multitude of oncosuppressive functions including growth inhibition, tumor cell …


The Role Of The Intermembrane Domain Of Mulan In Mitophagy And Cell Death, Jared M. Herbert Jan 2016

The Role Of The Intermembrane Domain Of Mulan In Mitophagy And Cell Death, Jared M. Herbert

Honors Undergraduate Theses

Mulan is an E3 ubiquitin ligase and an E3 SUMO ligase embedded in the outer mitochondrial membrane. Mulan plays a major role in various cell processes including cell growth, mitophagy, apoptosis, and mitochondrial dynamics. In addition, its deregulation is involved in the development and progression of several human disorders such as neurodegeneration and heart disease. There are two main discernible domains in Mulan: a large cytoplasmic domain that encodes the RING-finger motif and carries out the catalytic activity of the protein; the second domain of Mulan is exposed to the intermembrane space of mitochondria, and its function remains unknown. This …


A Protective Role Of Autophagy In A Drosophila Model Of Friedreich's Ataxia (Frda), Luan Wang Jan 2015

A Protective Role Of Autophagy In A Drosophila Model Of Friedreich's Ataxia (Frda), Luan Wang

Wayne State University Dissertations

Friedreich’s ataxia (FRDA) is an inherited autosomal recessive neurodegenerative disease. It affects 1 in every 50,000 people in central Europe and North America. FRDA is caused by deficiency of Frataxin, an essential mitochondrial iron chaperone protein, and the associated oxidative stress damages. Autophagy, a housekeeping process responsible for the bulk degradation and turnover of long half-life proteins and organelles, is featured by the formation of double-membrane vacuoles and lysosomal degradation. Previous researches indicate that Danon’s disease, the inherited neural disorder disease that shares similar symptoms with FRDA, is due to the malfunction of autophagy. Based on this, we raise the …


Cardiolipin Regulates Mitophagy Through The Pkc Pathway, Zheni Shen Jan 2015

Cardiolipin Regulates Mitophagy Through The Pkc Pathway, Zheni Shen

Wayne State University Dissertations

Cardiolipin (CL), the signature phospholipid of mitochondrial membranes, is important for cardiovascular health. Perturbation of CL metabolism is implicated in cardiovascular disease (CVD). The link between CL and CVD may be explained by the physiological roles of CL in pathways that are cardioprotective, such as autophagy/mitophagy and the mitogen-activated protein kinase (MAPK) pathways. My dissertation work focuses on elucidating how CL influences mitophagy and MAPK pathways.

crd1Δ was synthetically lethal/sick with the general autophagy mutants atg8Δ, atg18Δ and mitophagy mutant atg32Δ, suggesting that autophagy/mitophagy may be deficient in cells lacking CL. Microscopic examination of mitophagy revealed decreased translocation of GFP-tagged …


The Role Of Mitochondrial Omi/Htra2 Protease In Protein Quality Control And Mitophagy, Camilla Ambivero Jan 2013

The Role Of Mitochondrial Omi/Htra2 Protease In Protein Quality Control And Mitophagy, Camilla Ambivero

Electronic Theses and Dissertations

Omi/HtrA2 is a mitochondrial serine protease with a dual and opposite function depending on its subcellular localization. Most of the previous studies focused on Omi/HtrA2’s pro-apoptotic function when the protein is released to the cytoplasm. It is becoming apparent that the main function of Omi/HtrA2 is within the mitochondria, where it has a pro-survival role. However, its mechanism is still poorly understood. To this end, we used the yeast two-hybrid system to dissect the Omi/HtrA2 pathway by identifying novel interactors and substrates. Our studies revealed a novel function of Omi/HtrA2 in the regulation of a deubiquitinating (DUB) complex. In addition …