Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular Biology

Role Of Microrna-483 In Pancreatic Β-Cells, Jackson Waugh Jan 2020

Role Of Microrna-483 In Pancreatic Β-Cells, Jackson Waugh

Dissertations, Master's Theses and Master's Reports

Insulin is an essential hormone produced by β-cells in the pancreas. The release of insulin is tightly regulated in healthy people in order to control blood sugar level in our body. However, people with Type 2 Diabetes have insufficient insulin secretion from pancreatic β-cells, leaving to high blood sugar (hyperglycemia) and β-cell failure. microRNAs (miRNAs or miR) are newly discovered small regulatory molecules and have emerged as important regulator of cell growth, differentiation, and organ function. Altered miRNA function has been implicated in the pathogenesis of a variety of human disease, including diabetes. In this report, we focus on dissecting …


Staufen Negatively Modulates Microrna Activity In Caenorhabditis Elegans, Zhiji Ren, Isana Veksler-Lublinsky, David Morrissey, Victor Ambros Mar 2016

Staufen Negatively Modulates Microrna Activity In Caenorhabditis Elegans, Zhiji Ren, Isana Veksler-Lublinsky, David Morrissey, Victor Ambros

Victor R. Ambros

The double-stranded RNA-binding protein Staufen has been implicated in various post-transcriptional gene regulatory processes. Here we demonstrate that the Caenorhabditis elegans homolog of Staufen, STAU-1, functionally interacts with microRNAs. Loss-of-function mutations of stau-1 significantly suppress phenotypes of let-7 family microRNA mutants, a hypomorphic allele of dicer and a lsy-6 microRNA partial loss-of-function mutant. Furthermore, STAU-1 modulates the activity of lin-14, a target of lin-4 and let-7 family microRNAs, and this modulation is abolished when the 3' untranslated region of lin-14 is removed. Deep sequencing of small RNA cDNA libraries reveals no dramatic change in the levels of microRNAs, or other …


Effect Of Life History On Microrna Expression During C. Elegans Development, Xantha Karp, Molly Hammell, Maria C. Ow, Victor R. Ambros Oct 2015

Effect Of Life History On Microrna Expression During C. Elegans Development, Xantha Karp, Molly Hammell, Maria C. Ow, Victor R. Ambros

Victor R. Ambros

Animals have evolved mechanisms to ensure the robustness of developmental outcomes to changing environments. MicroRNA expression may contribute to developmental robustness because microRNAs are key post-transcriptional regulators of developmental gene expression and can affect the expression of multiple target genes. Caenorhabditis elegans provides an excellent model to study developmental responses to environmental conditions. In favorable environments, C. elegans larvae develop rapidly and continuously through four larval stages. In contrast, in unfavorable conditions, larval development may be interrupted at either of two diapause stages: The L1 diapause occurs when embryos hatch in the absence of food, and the dauer diapause occurs …