Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Molecular Biology

Identification Of Factors Involved In 18s Nonfunctional Ribosomal Rna Decay And A Method For Detecting 8-Oxoguanosine By Rna-Seq, Kelly A. Limoncelli Dec 2017

Identification Of Factors Involved In 18s Nonfunctional Ribosomal Rna Decay And A Method For Detecting 8-Oxoguanosine By Rna-Seq, Kelly A. Limoncelli

GSBS Dissertations and Theses

The translation of mRNA into functional proteins is essential for all life. In eukaryotes, aberrant RNAs containing sequence features that stall or severely slow down ribosomes are subject to translation-dependent quality control. Targets include mRNAs encoding a strong secondary structure (No-Go Decay; NGD) or stretches of positively-charged amino acids (Peptide-dependent Translation Arrest/Ribosome Quality Control; PDTA/RQC), mRNAs lacking an in-frame stop codon (Non-Stop Decay; NSD), or defective 18S rRNAs (18S Nonfunctional rRNA Decay; 18S NRD). Previous work from our lab showed that the S. cerevisiae NGD factors DOM34 and HBS1, and PDTA/RQC factor ASC1, all participate in the ...


Development And Application Of Mass Spectrometry-Based Proteomics To Generate And Navigate The Proteomes Of The Genus Populus, Paul Edward Abraham May 2013

Development And Application Of Mass Spectrometry-Based Proteomics To Generate And Navigate The Proteomes Of The Genus Populus, Paul Edward Abraham

Doctoral Dissertations

Historically, there has been tremendous synergy between biology and analytical technology, such that one drives the development of the other. Over the past two decades, their interrelatedness has catalyzed entirely new experimental approaches and unlocked new types of biological questions, as exemplified by the advancements of the field of mass spectrometry (MS)-based proteomics. MS-based proteomics, which provides a more complete measurement of all the proteins in a cell, has revolutionized a variety of scientific fields, ranging from characterizing proteins expressed by a microorganism to tracking cancer-related biomarkers. Though MS technology has advanced significantly, the analysis of complicated proteomes, such ...


Functional Analysis Of The C-Terminal Domain In The Drosophila Jil-1 Histone H3 Kinase, Xiaomin Bao Jan 2008

Functional Analysis Of The C-Terminal Domain In The Drosophila Jil-1 Histone H3 Kinase, Xiaomin Bao

Retrospective Theses and Dissertations

Epigenetic regulation is an important process utilized by biological systems to control gene expression and organize development, with histone modification enzymes among the most important components in this regulatory network. The predominant interphase H3 Serine10 kinase in Drosophila is JIL-1, which plays an important role in regulating chromosome structure and modulating gene expression. The full-length JIL-1 protein is composed of four domains including a N-terminal domain (NTD), two kinase domains (KDI and KDII), and a unique C-terminal domain (CTD). In order to study the biological importance of these individual domains, a domain analysis research approach was taken and different functions ...


Dissection Of The Mitotic And Nuclear Functions Of Chromator, A Nuclear-Derived Spindle Matrix Component In Drosophila, Yun Ding Jan 2008

Dissection Of The Mitotic And Nuclear Functions Of Chromator, A Nuclear-Derived Spindle Matrix Component In Drosophila, Yun Ding

Retrospective Theses and Dissertations

A spindle matrix has long been proposed to serve as a stationary or elastic molecular matrix substrate for the organization and activities of microtubules and motors, based on the consideration of a mechanical and functional support for the stabilization of microtubule spindle during force generation from mitotic motors. Recently, the identification of four Drosophila proteins, Skeletor, Megator, EAST and Chromator has provided molecular evidence for the existence of this macromolecular matrix structure during mitosis. All of these four proteins have been shown to interact with each other within a protein complex and redistribute from the nucleus at interphase to form ...


The Essential Jil-1 Kinase Regulates Histone H3 Phosphorylation And Maintains Chromatin Structure In Drosophila , Weiguo Zhang Jan 2004

The Essential Jil-1 Kinase Regulates Histone H3 Phosphorylation And Maintains Chromatin Structure In Drosophila , Weiguo Zhang

Retrospective Theses and Dissertations

JIL-1 encodes a chromatin-associated tandem serine/threonine kinase in Drosophila melanogaster. JIL-1 predominantly associates with interbands on polytene chromosomes. It appears at higher levels on the X chromosome than on autosomes in males, and distributes about equally on all chromosomes in females. In addition, in males JIL-1 overlaps with the MSL (for male specific lethal) complex that specifically associates with the male X chromosome on which expression of most genes are upregulated.;We isolated JIL-1 mutants by inducing imprecise excision of an EP element inserted in JIL-1. We found that JIL-1 is required for viability of both females and males ...


Identification And Functional Analysis Of Thylakoid Membrane Proteome , Yingchun Wang Jan 2003

Identification And Functional Analysis Of Thylakoid Membrane Proteome , Yingchun Wang

Retrospective Theses and Dissertations

Membrane proteins play crucial roles in many biological functions. Identities and functions of most membrane proteins remain to be revealed. New technological breakthroughs in proteomics together with the availability of genomic sequence information make it possible to study functions of membrane proteins on a genome-wide scale. We used a multidisciplinary approach combining biochemistry, genetics, proteomics and bioinformatics to study the functions of the thylakoid proteome of Synechocystis sp. PCC6803. The thylakoid membrane proteins were separated into peripheral and integral fractions and resolved into 2-D gels with different pH ranges. The protein spots in the 2-D gels were subjected to peptide ...


Oxidizing Side Of The Photosystem I , Jun Sun Jan 1999

Oxidizing Side Of The Photosystem I , Jun Sun

Retrospective Theses and Dissertations

Photosynthesis converts solar energy into the biological sources of energy for the life on our planet. Photosystem I (PSI) is one of the two reaction centers of oxygenic photosynthesis. PSI is a multiheteromeric membrane-protein complex that catalyzes light-driven electron transfer from plastocyanin or cytochrome c6 to ferredoxin. The PsaA and PsaB subunits form the heterodimeric core that harbors the primary electron donor P700. On the oxidizing side of the PSI complex, plastocyanin or cytochrome c6 donates electrons to the P700 reaction center. The objective of this dissertation is to identify elements of molecular recognition on the oxidizing side of PSI ...


Investigating The Mechanism Of Mrp/Plf Gene Expression By Bfgf , Alesia Marie Hruska-Hageman Jan 1998

Investigating The Mechanism Of Mrp/Plf Gene Expression By Bfgf , Alesia Marie Hruska-Hageman

Retrospective Theses and Dissertations

The mitogen-regulated protein/proliferin (mrp/ plf) genes belong to the prolactin/growth hormone gene superfamily and encode at least four closely related proteins. Identified functions of these proteins include stimulation of uterine proliferation and endothelial angiogenesis. In 3T3 cells, basic fibroblast growth factor (bFGF) stimulates the production of mrp/plf mRNAs with a resulting increase in the protein products. Although the three cloned mrp/ plf gene promoters (mrp3, plf42, and plf149 ) are over 97% identical in sequence, only mrp3 is transcriptionally activated by bFGF. We have identified a sequence in the mrp3 promoter, which we have named the "bFGF-responsive element ...


A Temperature-Sensitive Mutant Of Escherichia Coli Affected In The Alpha Subunit Of Rna Polymerase, Majid Mehrpouyan Dec 1990

A Temperature-Sensitive Mutant Of Escherichia Coli Affected In The Alpha Subunit Of Rna Polymerase, Majid Mehrpouyan

Electronic Theses and Dissertations

A temperature-sensitive mutant of Escherichia coli affected in the alpha subunit of RNA polymerase has been investigated. Gene mapping and complementation experiments placed the mutation to temperature-sensitivity within the alpha operon at 72 min on the bacterial chromosome. The rate of RNA synthesis in vivo and the accumulation of ribosomal RNA were significantly reduced in the mutant at 44$\sp\circ$C. The thermostability at 44$\sp\circ$C of the purified holoenzyme from mutant cells was about 20% of that of the normal enzyme. Assays with T7 DNA as a template showed that the fraction of active enzyme competent ...