Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Molecular Biology

Role Of P300 Zz Domain In Chromatin Association And Histone Acetylation, Yongming Xue Dec 2018

Role Of P300 Zz Domain In Chromatin Association And Histone Acetylation, Yongming Xue

Dissertations & Theses (Open Access)

Transcription is strictly regulated by numerous factors including transcription coactivators. The p300 protein and its close paralogue CREB-binding protein (CREBBP, aka CBP) are well-known transcriptional coactivators that have intrinsic lysine acetyltransferase activity. The functions of p300/CBP largely rely on their capabilities to bind to chromatin and to acetylate the histone substrates. However, the molecular mechanisms underlying the regulation of these processes are not fully understood.

Through combination of various biochemical, biophysical and molecular approaches, we show that the ZZ-type zinc finger (ZZ) domain of p300 functions as a histone reader that specifically binds the N-terminal tail of histone H3. Crystal …


An Expanded Toolkit For Gene Tagging Based On Mimic And Scarless Crispr Tagging In, David Li-Kroeger, Oguz Kanca, Pei-Tseng Lee, Sierra Cowan, Michael T Lee, Manish Jaiswal, Jose Luis Salazar, Yuchun He, Zhongyuan Zuo, Hugo J Bellen Aug 2018

An Expanded Toolkit For Gene Tagging Based On Mimic And Scarless Crispr Tagging In, David Li-Kroeger, Oguz Kanca, Pei-Tseng Lee, Sierra Cowan, Michael T Lee, Manish Jaiswal, Jose Luis Salazar, Yuchun He, Zhongyuan Zuo, Hugo J Bellen

Faculty Publications

We generated two new genetic tools to efficiently tag genes in Drosophila. The first, Double Header (DH) utilizes intronic MiMIC/CRIMIC insertions to generate artificial exons for GFP mediated protein trapping or T2A-GAL4 gene trapping in vivo based on Cre recombinase to avoid embryo injections. DH significantly increases integration efficiency compared to previous strategies and faithfully reports the expression pattern of genes and proteins. The second technique targets genes lacking coding introns using a two-step cassette exchange. First, we replace the endogenous gene with an excisable compact dominant marker using CRISPR making a null allele. Second, the insertion is replaced …


Characterizing The Recognition Motif And Novel Substrates Of Carm1, Sitaram Gayatri Jul 2018

Characterizing The Recognition Motif And Novel Substrates Of Carm1, Sitaram Gayatri

Dissertations & Theses (Open Access)

A limited pool of proteins attains vast functional repertoire due to posttranslational modifications (PTMs). Arginine methylation is a common posttranslational modification, which is catalyzed by a family of nine protein arginine methyltransferases or PRMTs. These enzymes deposit one or two methyl groups to the nitrogen atoms of arginine side-chains. Elucidating the substrate specificity of each PRMT will promote a better understanding of which signaling networks these enzymes contribute to. Although many PRMT substrates have been identified, and their methylation sites mapped, the optimal target motif for each of the nine PRMTs has not been systematically addressed. Here we describe the …


Functional Similarity Of Prd-Containing Virulence Regulators In Bacillus Anthracis, Malik Raynor May 2018

Functional Similarity Of Prd-Containing Virulence Regulators In Bacillus Anthracis, Malik Raynor

Dissertations & Theses (Open Access)

Bacillus anthracis produces three regulators, AtxA, AcpA, and AcpB, that control virulence gene expression and are members of an emerging class of regulators termed “PCVRs” (Phosphoenolpyruvate-dependent phosphotransferase regulation Domain-Containing Virulence Regulators). AtxA controls expression of the toxin genes; lef, cya, and pag, and is the master virulence regulator and archetype PCVR. AcpA and AcpB are less well studied. AcpA and AcpB independently positively control transcription of the capsule biosynthetic operon capBCADE, and culture conditions that enhance AtxA activity result in capBCADE transcription in strains lacking acpA and acpB. RNA-Seq was used to assess the regulons of the …


Investigating The Impact Of Intragenic Dna Methylation On Gene Expression, And The Clinical Implications On Tumor Cells And Associated Stroma, Michael Mcguire May 2018

Investigating The Impact Of Intragenic Dna Methylation On Gene Expression, And The Clinical Implications On Tumor Cells And Associated Stroma, Michael Mcguire

Dissertations & Theses (Open Access)

Investigations into the function of non-promoter DNA methylation have yielded new insights into epigenetic regulation of gene expression. Previous studies have highlighted the importance of distinguishing between DNA methylation in discrete functional regions; however, integrated non-promoter DNA methylation and gene expression analyses across a wide number of tumor types and corresponding normal tissues have not been performed. Through integrated analysis of gene expression and DNA methylation profiles, we uncovered an enrichment of DNA methylation sites within the gene body and 3’UTR in which DNA methylation is strongly positively correlated with gene expression. We examined 32 tumor types and identified 57 …


Nanoscale Organization Of The Small Gtpase Rac1, Kelsey Maxwell May 2018

Nanoscale Organization Of The Small Gtpase Rac1, Kelsey Maxwell

Dissertations & Theses (Open Access)

Rac1 is a small, guanine-nucleotide binding protein that cycles between an inactive GDP-bound and active GTP-bound state to regulate actin-mediated motility, migration, and adhesion. Plasma membrane (PM) localization is essential for its biological activity. Rac1 PM targeting is directed by a C-terminal membrane anchor that encompasses a geranylgeranyl-cysteine-methyl-ester, palmitoyl, and a polybasic domain (PBD) of contiguous lysine and arginine residues. Using high-resolution imaging combined with spatial mapping analysis, I found that Rac1 forms nanoclusters on the PM. Cycling between the GTP- and GDP-bound states, Rac1 forms nanoclusters that are non-overlapping, consequently undergoing guanine nucleotide-dependent spatial segregation. I further found that …


Evolution Via Gene Duplication And Alternative Splicing In The Eukaryotic Ski7 And Hbs1 Genes, Alexandra Marshall May 2018

Evolution Via Gene Duplication And Alternative Splicing In The Eukaryotic Ski7 And Hbs1 Genes, Alexandra Marshall

Dissertations & Theses (Open Access)

Gene duplication and alternative splicing are both recognized as important drivers of proteomic diversity and innovation during evolution, but the evolutionary changes over long periods of time or the interrelations of the two processes has not been extensively studied. Here I study these phenomena for the SKI7 and HBS1 gene pair. These Saccharomyces cerevisiae genes were created as part of a whole genome duplication (WGD) event and have since functionally diverged. Although both genes function in mRNA surveillance pathways, the two genes act on different RNAs and have different effects on the target mRNAs. Ski7 brings the Ski complex and …


Deciphering The Roles Of Δnp63 In Regulating Epithelial To Mesenchymal Transition, Cancer Progression And Metastasis, Ngoc Bui May 2018

Deciphering The Roles Of Δnp63 In Regulating Epithelial To Mesenchymal Transition, Cancer Progression And Metastasis, Ngoc Bui

Dissertations & Theses (Open Access)

p63 is a member of the p53 family, a well-known tumor suppressor which is considered the guardian of the genome. The TP63 gene encodes multiple isoforms that can be categorized into two main isoforms, TAp63 and ΔNp63, which are expressed in different cellular compartments and have distinct functions in many biological processes. While the Flores laboratory identified TAp63 as a tumor and metastasis suppressor, the precise roles of ΔNp63 isoforms in tumorigenesis and metastasis remain elusive. ΔNp63 is the predominant p63 isoform expressed in the epidermis and plays essential roles in regulating epidermal development and homeostasis. Utilizing a ΔNp63-conditional …


Biological Clocks, Inflammation, And Multiorgan Damage In Sickle Cell Disease, Morayo Adebiyi May 2018

Biological Clocks, Inflammation, And Multiorgan Damage In Sickle Cell Disease, Morayo Adebiyi

Dissertations & Theses (Open Access)

Sickle cell disease (SCD) is a dangerous condition caused by a genetic mutation on the human beta-globin gene that contributes to erythrocyte sickling, the hallmark of the disease. Previous metabolomics studies have confirmed that elevated sphingosine kinase 1 (SphK1) mediates sphingosine-1-phosphate (S1P) production to promote erythrocyte sickling. S1P signals via five S1P receptors (S1PR) regulates several pathophysiological functions.

In the first chapter of this dissertation, I explored the role of S1PRs in SCD by utilizing pharmacologic and genetic tools. To determine the role of S1P-S1PRs signaling in SCD, I treated humanized Berkeley sickle mice (Berkeley HBS mice), with FTY720, a …


The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland May 2018

The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland

Dissertations & Theses (Open Access)

DNA methylation is an essential epigenetic modification in mammals, as it plays important regulatory roles in multiple biological processes, such as gene transcription, maintenance of chromosomal structure and genomic stability, genomic imprinting, retrotransposon silencing, and X-chromosome inactivation. Dysregulation of DNA methylation is associated with various human diseases. For example, cancer cells usually show global hypomethylation and regional hypermenthylation, which have been implicated in genomic instability and tumor suppressor silencing, respectively. Although great progress has been made in elucidating the biological functions of DNA methylation over the last several decades, how DNA methylation patterns and levels are regulated and dysregulated is …