Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

2017

Cell Biology

Institution
Keyword
Publication
Publication Type
File Type

Articles 31 - 60 of 69

Full-Text Articles in Molecular Biology

Linear Dna-Linked Nanoparticle Building Blocks (Nblocks) For Modular Self-Assembly Of Nanostructures, Jakob Thomas Hockman Aug 2017

Linear Dna-Linked Nanoparticle Building Blocks (Nblocks) For Modular Self-Assembly Of Nanostructures, Jakob Thomas Hockman

Graduate Theses and Dissertations

Controlling the shapes and sizes of nanomaterials often enables controlling their properties for certain applications. The most promising methods for controlling the shapes and sizes of nanostructures use base-pairing between complementary DNA strands to self-assemble nanostructures from DNA and nanoparticles. DNA Brick-based self-assembly is a particularly useful method for creating DNA nanostructures. It offers a large amount of control over the final shapes and sizes because it uses building blocks that are anisotropic and have predictable geometry. However, this control has not been extended to the self-assembly of nanostructures from nanoparticles. Applying DNA Brick based self-assembly to the self-assembly of …


The Structural And Functional Properties Of A Double Mutant Of Human Acidic Fibroblast Growth Factor (Hfgf-1), Arwa Mohammed Alghanmi Aug 2017

The Structural And Functional Properties Of A Double Mutant Of Human Acidic Fibroblast Growth Factor (Hfgf-1), Arwa Mohammed Alghanmi

Graduate Theses and Dissertations

Human acidic Fibroblast Growth Factor 1 (FGF-1), a member of the FGF superfamily, is a potent mitogen and heparin-binding protein involved in a broad spectrum of biological processes, including angiogenesis, cell proliferation, and wound healing. Design of hFGF-1 with an increased thermal stability and an enhanced cell proliferation activity is highly desired for wound healing applications. Herein, we have designed the variant of FGF-1 by substituting two important amino residues in the heparin-binding pocket. The variant was overexpressed in Escherichia coli and was successfully purified to homogeneity using an affinity chromatographic procedure. Far-UV circular dichroism spectroscopic analysis showed that the …


Gcn5 Impacts Fgf Signaling At Multiple Levels And Activates C-Myc Target Genes During Early Differentiation Of Embryoid Bodies, Li Wang Aug 2017

Gcn5 Impacts Fgf Signaling At Multiple Levels And Activates C-Myc Target Genes During Early Differentiation Of Embryoid Bodies, Li Wang

Dissertations & Theses (Open Access)

Precise control of gene expression during development is orchestrated by transcription factors, signaling pathways and co-regulators, with complex cross-regulatory events often occurring. Growing evidence has identified chromatin modifiers as important regulators for development as well, yet how particular chromatin modifying enzymes affect specific developmental processes remains largely unclear. Embryonic stem cells (ESCs) are self-renewing, pluripotent, and have the abilities to generate almost all cell types in adult tissues. The dual capacity of ESCs to self-renew and differentiate offers unlimited potential for studying gene regulation events at specific developmental stages in vitro that parallel developmental events during embryogenesis in vivo. …


The Key Question In Symbiotic Nitrogen Fixation: How Does Host Maintain A Bacterial Symbiont?, Onur Oztas Jul 2017

The Key Question In Symbiotic Nitrogen Fixation: How Does Host Maintain A Bacterial Symbiont?, Onur Oztas

Doctoral Dissertations

The fact that plants cannot use nitrogen in the gaseous form makes them dependent on the levels of usable nitrogen forms in the soil. Legumes overcome nitrogen limitation by entering a symbiotic association with rhizobia, soil bacteria that convert atmospheric nitrogen into usable ammonia. In root nodules, bacteria are internalized by host plant cells inside an intracellular compartment called the symbiosome where they morphologically differentiate into nitrogen-fixing forms by symbiosome-secreted host proteins. In this project, I explained the host proteins required to maintain bacterial symbionts and described their delivery to the symbiosome. I showed that the SYNTAXIN 132 (SYP132) gene …


A Lipid Binding Structure And Functional Analysis Of Human Arv1, Jessie Lee Cunningham Jun 2017

A Lipid Binding Structure And Functional Analysis Of Human Arv1, Jessie Lee Cunningham

Graduate School of Biomedical Sciences Theses and Dissertations

Metabolic Syndrome (MetS) is a combination of risk factors that can over time increase the probability of developing diseases, including cardiovascular disease, type 2 diabetes, non-alcoholic fatty liver disease (NAFLD), and non-alcoholic steatohepatitis (NASH). Acyl-coenzyme-A: cholesterol O-acyl transferase related enzyme required for viability-1, abbreviated as Arv1, is an evolutionarily conserved putative lipid binding protein. Several studies have implicated hArv1 as a critical regulator of lipid transport and trafficking.

Recent work using an Arv1 knock out (KO) mouse model have established a clear link between Arv1 function and the progression of MetS and NAFLD/NASH [unpublished data] [1]. Overall, studies show that …


Central Role Of Il-23 And Il-17 Producing Eosinophils As Immunomodulatory Effector Cells In Acute Pulmonary Aspergillosis And Allergic Asthma, Evelyn V. Santos Guerra, Chrono K. Lee, Charles A. Specht, Bhawna Yadav, Haibin Huang, Ali Akalin, Jun R. Huh, Christian Mueller, Stuart M. Levitz May 2017

Central Role Of Il-23 And Il-17 Producing Eosinophils As Immunomodulatory Effector Cells In Acute Pulmonary Aspergillosis And Allergic Asthma, Evelyn V. Santos Guerra, Chrono K. Lee, Charles A. Specht, Bhawna Yadav, Haibin Huang, Ali Akalin, Jun R. Huh, Christian Mueller, Stuart M. Levitz

Christian Mueller

Aspergillus fumigatus causes invasive pulmonary disease in immunocompromised hosts and allergic asthma in atopic individuals. We studied the contribution of lung eosinophils to these fungal diseases. By in vivo intracellular cytokine staining and confocal microscopy, we observed that eosinophils act as local sources of IL-23 and IL-17. Remarkably, mice lacking eosinophils had a >95% reduction in the percentage of lung IL-23p19+ cells as well as markedly reduced IL-23 heterodimer in lung lavage fluid. Eosinophils killed A. fumigatus conidia in vivo. Eosinopenic mice had higher mortality rates, decreased recruitment of inflammatory monocytes, and decreased expansion of lung macrophages after challenge with …


Hepatitis C Virus-Induced Monocyte Differentiation Into Polarized M2 Macrophages Promotes Stellate Cell Activation Via Tgf-Beta, Banishree Saha, Karen Kodys, Gyongyi Szabo May 2017

Hepatitis C Virus-Induced Monocyte Differentiation Into Polarized M2 Macrophages Promotes Stellate Cell Activation Via Tgf-Beta, Banishree Saha, Karen Kodys, Gyongyi Szabo

Gyongyi Szabo

BACKGROUND and AIMS: Monocyte and macrophage (MPhi) activation contributes to the pathogenesis of chronic hepatitis C virus (HCV) infection. Disease pathogenesis is regulated by both liver-resident MPhis and monocytes recruited as precursors of MPhis into the damaged liver. Monocytes differentiate into M1 (classic/proinflammatory) or M2 (alternative/anti-inflammatory) polarized MPhis in response to tissue microenvironment. We hypothesized that HCV-infected hepatoma cells (infected with Japanese fulminant hepatitis-1 [Huh7.5/JFH-1]) induce monocyte differentiation into polarized MPhis. METHODS: Healthy human monocytes were co-cultured with Huh7.5/JFH-1 cells or cell-free virus for 7 days and analyzed for MPhi markers and cytokine levels. A similar analysis was performed on …


Functional Roles Of Matrix Metalloproteinases In Bone Metastatic Prostate Cancer, Jeremy S. Frieling May 2017

Functional Roles Of Matrix Metalloproteinases In Bone Metastatic Prostate Cancer, Jeremy S. Frieling

USF Tampa Graduate Theses and Dissertations

Skeletal metastasis is a lethal component of many advanced cancers including prostate, the second most common cancer among men. Patients whose prostate cancer is localized and detected early benefit from multiple treatment options ranging from active surveillance to radiation and surgery, resulting in a 5-year survival rate of nearly 100%. Unfortunately, the prognosis and survival for patients with advanced metastatic disease is much worse due to the highly aggressive nature of the disease and a paucity of treatment options. Understanding the mechanisms and interactions that occur between metastatic cancer cells and the bone will enable the future treatment landscape for …


Applied Drug Development And Combinatorial Strategies For Antimicrobial Treatment, Steven K. Lai Hing May 2017

Applied Drug Development And Combinatorial Strategies For Antimicrobial Treatment, Steven K. Lai Hing

Andrews Research Conference

Streptococcus mutans JH1140 is a strain of bacteria which produces a lantibiotic product, named mutacin 1140. Mutacin 1140 has been shown to be effective at inhibiting Gram-positive bacterial infections caused by Staphylococcus aureus and Streptococcus pneumoniae. Mutacin 1140 is a ribosomally synthesized peptide antibiotic that undergoes extensive posttranslational modifications (PTM). We have found that Mutacin 1140 and an aminoglycoside, Kanamycin, when combined together, act synergistically against Staphylococcus aureus. This was determined by performing serial kill curve dilution overlays on solid media, followed up with kill curve by microdilution plate, and most recently confirmed with kill curve CFU count plates …


Mechanisms Of G Protein Regulation By Rgs Proteins And Small Molecule Inhibitors, Stanley Michinobu Kanai May 2017

Mechanisms Of G Protein Regulation By Rgs Proteins And Small Molecule Inhibitors, Stanley Michinobu Kanai

Arts & Sciences Electronic Theses and Dissertations

G protein coupled receptors transduce diverse extracellular signals like hormones, neurotransmitters, and photons to specific cellular responses through heterotrimeric G proteins. G proteins activate numerous effectors and signal transduction pathways, and therefore the regulation of G proteins is crucial for faithful propagation of specific cellular and physiological responses. A better understanding of the mechanisms that regulate G proteins should provide new insight into signaling pathways that govern healthy and disease states, and also provide opportunities for discovery of novel therapeutic targets.Regulator of G protein signaling (RGS) proteins are crucial regulators of G proteins, for they control amplitude and duration of …


Myosin Xi-I Works In Tandem With A Microtubule-Associated Mechanism To Position The Nucleus In Arabidopsis Root Hairs, Ian Andrew Windham May 2017

Myosin Xi-I Works In Tandem With A Microtubule-Associated Mechanism To Position The Nucleus In Arabidopsis Root Hairs, Ian Andrew Windham

Chancellor’s Honors Program Projects

No abstract provided.


Uncovering The Identity And Metabolism Of Bacterial Coa-Rna, Joseph R. Spangler May 2017

Uncovering The Identity And Metabolism Of Bacterial Coa-Rna, Joseph R. Spangler

Dissertations

Coenzyme A is an indispensable molecule in all known life with roles in metabolism, gene regulation, and macromolecule synthesis. As CoA is derived from RNA itself, it’s incorporation into RNA by in vitro methods has proven useful in research probing the origin of life based on the RNA World theory. The discovery in contemporary bacteria of RNA modified with CoA, however, provided an unexpected twist to previously well-characterized bacterial systems. The identity of sequences associated with CoA-RNA has been elusive since their discovery in 2009 based on the difficulties in isolation while maintaining RNA quality. The aim of this study …


Lymphoid Hematopoiesis And The Role Of B-Cells In Transgenic Mouse Model Of Sickle Cell Disease, Christina Cotte May 2017

Lymphoid Hematopoiesis And The Role Of B-Cells In Transgenic Mouse Model Of Sickle Cell Disease, Christina Cotte

University Scholar Projects

Sickle cell disease (SCD) has been shown to be associated with decreased baseline immunity and thus increased susceptibility to infection. I sought to discern possible causes of this by looking into the correlations between SCD and hematopoiesis, the immune system and the neuroendocrine system, and ultimately by conducting experiments surrounding the impaired immune system of SCD. These experiments focused on the potential causes and effects of the diminution of B-1a cells in the SCD spleen. Adoptive transfers, infections with Streptococcus pneumoniae, and histologic imaging were conducted to establish if the diminution of the B-1a cells in the SCD spleen …


Phopsphorylation And Ubiquitin Modification At Dna Damage Sites In Response To Double-Strand Breaks, Atanu Paul May 2017

Phopsphorylation And Ubiquitin Modification At Dna Damage Sites In Response To Double-Strand Breaks, Atanu Paul

Dissertations & Theses (Open Access)

Genomes of all organisms are continuously damaged by numerous exogenous and endogenous sources leading to different kinds of DNA lesions, which if not repaired efficiently may trigger wide-scale genomic instability, a hallmark of cancer development. To overcome this, cells have evolved a sophisticated sensory network called the DNA damage response (DDR) comprised of a large number of distinct protein complexes categorized as sensor, mediator, transducer and effector proteins that amplify the DNA damage signal and activate cell cycle checkpoint to initiate DNA repair or trigger apoptosis where the defect is beyond repair. This intricate signaling pathway is tightly regulated by …


Characterization Of E-Cadherin Regulation In Response To Zeb1 Inhibition In Endometrial Cancer Cell Lines, Chidozie Paul Chukwu May 2017

Characterization Of E-Cadherin Regulation In Response To Zeb1 Inhibition In Endometrial Cancer Cell Lines, Chidozie Paul Chukwu

Graduate School of Biomedical Sciences Theses and Dissertations

Epithelial to mesenchymal transition (EMT) is the process in which cells lose their epithelial structure during gastrulation. This process also affects the migration and movement of tumor cells and promotes invasion and metastases of endometrial carcinomas. Down-regulation of E-cadherin (CDH1) by transcription factors is the key target of EMT modulators and is achieved mainly by ZEB1 (zinc finger E-box binding homeobox 1). Current research looking at restoration of E-cadherin expression in vitro involves the use of small molecules such as histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors. Trichostatin A (TSA) and small interfering ribonucleic acid (siRNA) are tools that …


Mapping The Interaction Between Lrrc59 And Cip2a Oncoprotein, Tamika C. Reed May 2017

Mapping The Interaction Between Lrrc59 And Cip2a Oncoprotein, Tamika C. Reed

Graduate School of Biomedical Sciences Theses and Dissertations

The oncogene cancerous inhibitor of protein phosphatase 2A (CIP2A) has been shown to promote oncogenesis through numerous protein-protein interactions. CIP2A was initially found to be a direct inhibitor of the PP2A tumor suppressor protein; however, new research has demonstrated that CIP2A can act independently of PP2A through protein-protein interactions resulting in deregulation of the cell cycle and the development of therapeutic drug resistance, tumorigenesis, and cell proliferation. It has been shown that leucine rich repeat containing 59 protein (LRRC59) binds to and is required for the nuclear translocation of CIP2A, thereby making this interaction a target for drug therapy. Thus, …


The Role Of The Expansion Segment 7 Of 25s Rrna During Oxidative Stress In Saccharomyces Cerevisiae, Ethan Gardner May 2017

The Role Of The Expansion Segment 7 Of 25s Rrna During Oxidative Stress In Saccharomyces Cerevisiae, Ethan Gardner

Graduate School of Biomedical Sciences Theses and Dissertations

Translation is an essential process for protein expression in both eukaryotes and prokaryotes. Like any cellular process, translational factors are prone to damage when the cell is under stress. One common stressor that nearly all cells may experience is abnormal levels of reactive oxygen species (ROS). Damage caused by ROS has been associated with disease ranging from neurodegenerative impairments, to the aging process of cells. These oxygen radicals are capable of damaging a litany of molecules including nucleic acids, and molecular factors involved in translation. It has been shown that tRNA can be cleaved upon ROS-induced stress and these fragments …


Using Rb-Tnseq To Analyze Natural Variation In Saccharomyces Cerevisiae, Syed Raza Mahmood May 2017

Using Rb-Tnseq To Analyze Natural Variation In Saccharomyces Cerevisiae, Syed Raza Mahmood

Graduate Theses and Dissertations

One of the main challenges in biology today is the characterization of millions of genes of unknown function being continuously identified in sequencing studies. Transposon mutagenesis is a technique that has been widely used for annotating gene function and has now been combined with next-generation sequencing (Tn-Seq) to assess mutant fitness on a genome wide basis. However, Tn-Seq approaches are often constrained by laborious library preparation protocols which limit the number of organisms or conditions that can be assessed. Random bar code transposon-site sequencing (RB-TnSeq), is a transposon sequencing technique that streamlines library preparation and increases the throughput of mutant …


Thylakoid Protein Targeting/Insertion By A Signal Recognition Particle In Chloroplasts, Priyanka Sharma May 2017

Thylakoid Protein Targeting/Insertion By A Signal Recognition Particle In Chloroplasts, Priyanka Sharma

Graduate Theses and Dissertations

Protein targeting is a fundamental cellular process that directs proteins from their site of synthesis to the site where they function. The signal recognition particle (SRP) dependent targeting pathway is conserved in both eukaryotes and prokaryotes where it co-translationally targets polypeptide chains emerging from ribosomes to the endoplasmic reticulum (eukaryotes) or cytoplasmic membrane (prokaryotes). A structurally unique form of SRP is found in chloroplasts where it functions to post-translationally bind and target a subset of integral thylakoid membrane proteins, the light harvesting chlorophyll binding proteins (LHCPs). Mature LHCPs bind chlorophyll a/b and function in photosynthetic light capture. Like many other …


Understanding The Mechanism Of Genomic Instability During Replicative Aging In Budding Yeast, Sangita Pal May 2017

Understanding The Mechanism Of Genomic Instability During Replicative Aging In Budding Yeast, Sangita Pal

Dissertations & Theses (Open Access)

Aging brings a gradual decline in molecular fidelity and biological functionality, resulting in age related phenotypes and diseases. Despite continued efforts to uncover the conserved aging pathways among eukaryotes, exact molecular causes of aging are still poorly understood. One of the most important hallmarks of aging is increased genomic instability. However, there remains much ambiguity as to the cause. I am studying the replicative life span (RLS) of the genetically tractable model organism Saccharomyces cerevisiae, or budding yeast using the innovative “mother enrichment program” as the method to isolate unparalleled numbers of aged yeast cells to investigate the molecular changes …


The Role Of Adenosine Signaling In Mature Erythrocytes And Erythroid Progenitors, Hong Liu May 2017

The Role Of Adenosine Signaling In Mature Erythrocytes And Erythroid Progenitors, Hong Liu

Dissertations & Theses (Open Access)

Adenosine is a ubiquitous nucleoside in almost all the cells throughout our bodies. It is highly induced particularly under hypoxia or energy depletion conditions. Adenosine functions as a critical ligand, after binding to membrane-associated adenosine receptors, adenosine initiates a downstream signaling cascade and subsequently contributes to functions of nervous system, immune response, vascular function and even metabolism.

Hypoxia is a condition with limited O2 availability in the whole body or a region of the body. It is a major consequence of many respiratory and cardiovascular diseases, as well as for people living and working at high altitudes or other …


Melatonin And Its Metabolites Protect Human Melanocytes Against Uvb-Induced Damage: Involvement Of Nrf2-Mediated Pathways, Zorica Janjetovic, Stuart G. Jarrett, Elizabeth F. Lee, Cory Duprey, Russel J. Reiter, Andrzej T. Slominski Apr 2017

Melatonin And Its Metabolites Protect Human Melanocytes Against Uvb-Induced Damage: Involvement Of Nrf2-Mediated Pathways, Zorica Janjetovic, Stuart G. Jarrett, Elizabeth F. Lee, Cory Duprey, Russel J. Reiter, Andrzej T. Slominski

Toxicology and Cancer Biology Faculty Publications

Ultraviolet light (UV) is an inducer of reactive oxygen species (ROS) as well as 6-4-photoproducts and cyclobutane pyrimidine dimers (CPD) in the skin, which further cause damage to the skin cells. Irradiation of cultured human melanocytes with UVB stimulated ROS production, which was reduced in cells treated with melatonin or its metabolites: 6-hydroxymelatonin (6-OHM), N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), N-acetylserotonin (NAS), and 5-methoxytryptamine (5-MT). Melatonin and its derivatives also stimulated the expression of NRF2 (nuclear factor erythroid 2 [NF-E2]-related factor 2) and its target enzymes and proteins that play an important role in cell protection from different damaging factors including UVB. Silencing …


Uncovering Transcriptional Activators And Targets Of Hsf-1 In Caenorhabditis Elegans, Jessica Brunquell Apr 2017

Uncovering Transcriptional Activators And Targets Of Hsf-1 In Caenorhabditis Elegans, Jessica Brunquell

USF Tampa Graduate Theses and Dissertations

In order to survive, cells must be able to cope with a variety of environmental stressors. The heat shock response (HSR) is a pro-survival mechanism employed by cells in response to protein denaturing stress, such as heat. Since its discovery in 1960, the heat shock response has been found to be regulated by the transcription factor heat shock factor 1 (HSF1). During periods of increased stress, HSF1 undergoes a multi-step process of activation that involves homotrimerization, DNA-binding, and post-translational regulatory modifications, all of which ultimately function to control the transcription of chaperone genes. These chaperone genes encode molecular chaperone proteins …


Mass-Spectrometry Based Proteomics Of Age-Related Changes In Murine Microglia, Antwoine Flowers Mar 2017

Mass-Spectrometry Based Proteomics Of Age-Related Changes In Murine Microglia, Antwoine Flowers

USF Tampa Graduate Theses and Dissertations

The last century has seen a steady increase in the extension of the average lifespan. This has concomitantly produced higher incidences of age-related chronic degenerative diseases like Alzheimer’s and Parkinson’s diseases. Age is the single greatest risk factor for the development of not just these degenerative conditions but cancer as well. The aged niche undergoes a number of maladaptive changes that allow underlying conditions to present and progress. Exactly which changes, contribute to the progression of which disease is currently an area of intense study. However, these answers often present therapeutic targets for disease prevention. Age is characterized by a …


Effect Of Endoplasmic Reticulum Stress On Vascular Smooth Muscle Cells And Its Regulation Of Sm22Α, Neeraja Priyanka Annam Jan 2017

Effect Of Endoplasmic Reticulum Stress On Vascular Smooth Muscle Cells And Its Regulation Of Sm22Α, Neeraja Priyanka Annam

Wayne State University Dissertations

Background: The vascular smooth muscle cells(VSMC) possess the ability to differentiate into a synthetic phenotype in response to stress. This phenotypic modulation may be accompanied by inflammatory or osteogenic response in chronic stress. The synthetic state is characterized by low levels of contractile markers unlike the differentiated state.

Hypothesis: Endoplasmic reticulum (ER) stress causes phenotypic modulation in VSMCs leading to apoptosis. Many transcription factors induced by ER stress contribute to the downregulation of Sm22α. Perturbation in cytoskeletal dynamics exacerbates the ER stress response.

Methods: Ex-vivo culture was used to establish importance of Sm22 in ER stress. In vitro analysis was …


Investigating The Essential Roles Of Dprl-1 In Drosophila Melanogaster, Alex Lee Jan 2017

Investigating The Essential Roles Of Dprl-1 In Drosophila Melanogaster, Alex Lee

Summer Research

Phosphatase of Regenerating Liver (PRL) proteins regulate a number of important cellular processes, including cell growth and division. Humans have three PRL proteins: PRL-1, PRL-2, and PRL-3. An accumulation of evidence has shown that elevated levels of PRLs are strongly correlated with uncontrollable growth and metastasis of tumors. However, contradictory findings have arisen indicating that PRLs instead function to halt cell division thereby preventing uncontrollable tumor growth. In light of these results, the underlying mechanisms regarding how PRLs function within cellular processes remains unclear. To investigate the functions of PRLs, we will create transgenic fruit flies (Drosophila melanogaster) …


Role Of Alström Syndrome 1 (Alms1) In Nkcc2 Endocytosis, Thick Ascending Limb Function, Blood Pressure Regulation And Metabolic Function, Ankita Bachhawat Jaykumar Jan 2017

Role Of Alström Syndrome 1 (Alms1) In Nkcc2 Endocytosis, Thick Ascending Limb Function, Blood Pressure Regulation And Metabolic Function, Ankita Bachhawat Jaykumar

Wayne State University Dissertations

NaCl absorption by the Thick Ascending Limb (TAL) is mediated by the apical Na+/K+/2Cl- co-transporter, NKCC2. Increased NKCC2 activity and apical trafficking are associated to salt sensitive hypertension in rodents and humans. NKCC2 endocytosis is important for maintaining surface NKCC2 such that blocking NKCC2 endocytosis increased NKCC2 surface abundance and NKCC2-mediated NaCl reabsorption. Despite its importance, NKCC2 endocytosis has been poorly studied and a part of the reason may be attributed to the lack of availability of methods with good time resolution. Hence, we developed a method to image apical NKCC2 to monitor its endocytosis in real-time by Total Internal …


Examining The Role Of Grp And Lik1 In Wall Associated Kinase (Wak) Perception Of Pectin In The Plant Cell Wall, Jack Ryan Mitchell Jan 2017

Examining The Role Of Grp And Lik1 In Wall Associated Kinase (Wak) Perception Of Pectin In The Plant Cell Wall, Jack Ryan Mitchell

Honors Projects

Wall associated kinases (WAKs) are cell membrane bound receptor kinases that bind pectin and pectin fragments (OGs).The binding of WAKs to pectin sends a growth signal required for cell elongation and plant development. WAKs bind OGs with higher affinity than native pectin and instead activate a stress response. Glycine rich proteins (GRPs) are secreted cell wall proteins of unknown function. Seven GRPs with 65% sequence similarity are coded on a 90kb locus of Arabidopsis chromosome 2. GRP3 and WAK1 have been shown to bind in vitro, but single null mutations have no discernible phenotype, suggesting that the GRPs are redundant. …


Dense Core Vesicle Heterogeneity In Anterior Pituitary Cells, Kelly Sinak Jan 2017

Dense Core Vesicle Heterogeneity In Anterior Pituitary Cells, Kelly Sinak

Electronic Theses and Dissertations

Peptides, which are packaged in dense core vesicles, are an integral part of the function of the endocrine and neurological systems. The dense core vesicles function as an efficient form of peptide storage prior to regulated exocytosis. Two different dense core specific transmembrane proteins traffic different when comparted to retained prolactin cores, offering evidence of heterogeneity of vesicles within a single cell. By comparing synaptotagmin 1 and 7 distribution in male rat and lactating female lactotrophs, a distinct pattern emerges. Cells that retain prolactin cores after exocytosis correspond with those that contain synaptotagmin 1. This finding is a reversal for …


Towards The Complete Proteinaceous Regulome Of Acinetobacter Baumannii, Leila G. Casella, Andy Weiss, Ernesto Pérez-Rueda, J Antonio Ibarra, Lindsey N. Shaw Jan 2017

Towards The Complete Proteinaceous Regulome Of Acinetobacter Baumannii, Leila G. Casella, Andy Weiss, Ernesto Pérez-Rueda, J Antonio Ibarra, Lindsey N. Shaw

Molecular Biosciences Faculty Publications

The emergence of Acinetobacter baumannii strains, with broad multidrug-resistance phenotypes and novel virulence factors unique to hypervirulent strains, presents a major threat to human health worldwide. Although a number of studies have described virulence-affecting entities for this organism, very few have identified regulatory elements controlling their expression. Previously, our group has documented the global identification and curation of regulatory RNAs in A. baumannii. As such, in the present study, we detail an extension of this work, the performance of an extensive bioinformatic analysis to identify regulatory proteins in the recently annotated genome of the highly virulent AB5075 strain. In so …