Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Dynamic Host-Pathogen Interactions Result In Fungal Epitope Unmasking, Alex Hopke Aug 2016

Dynamic Host-Pathogen Interactions Result In Fungal Epitope Unmasking, Alex Hopke

Electronic Theses and Dissertations

Molecular camouflage is used by a diverse set of pathogens to disguise their identity and avoid recognition by protective host receptors. The opportunistic fungal pathogen Candida albicans is a good example, as it masks the inflammatory component β-glucan in its cell wall to evade detection by the immune receptor Dectin-1. Interestingly, it has been seen that β-glucan becomes unmasked during infection in vivo, though the underlying mechanisms remained unclear. Exposure levels of this epitope may be important, as Dectin-1 mediates protection from some strains of C. albicans and alterations in the organization and composition of the Candida cell wall …


Investigation Of Respiratory Syncytial Virus Structural Determinants And Exploitation Of The Host Ubiquitin System, Jillian Nicole Whelan Apr 2016

Investigation Of Respiratory Syncytial Virus Structural Determinants And Exploitation Of The Host Ubiquitin System, Jillian Nicole Whelan

USF Tampa Graduate Theses and Dissertations

Respiratory syncytial virus (RSV) is a globally circulating, non-segmented, negative sense (NNS) RNA virus that causes severe lower respiratory infections. This study explored several avenues to ultimately expand upon our understanding of RSV pathogenesis at the protein level. Evaluation of RSV intrinsic protein disorder increased the relatively limited description of the RSV structure-function relationship. Global proteomics analysis provided direction for further hypothesis-driven investigation of host pathways altered by RSV infection, specifically the interaction between the RSV NS2 protein and the host ubiquitin system. NS2 primarily acts to antagonize the innate immune system by targeting STAT2 for proteasomal degradation. The goal …